Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wan Ki Bae is active.

Publication


Featured researches published by Wan Ki Bae.


Nano Letters | 2013

Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure

Jeonghun Kwak; Wan Ki Bae; Donggu Lee; Insun Park; Jaehoon Lim; Myeongjin Park; Hyunduck Cho; Heeje Woo; Do Y. Yoon; Kookheon Char; Seonghoon Lee; Changhee Lee

We report highly bright and efficient inverted structure quantum dot (QD) based light-emitting diodes (QLEDs) by using solution-processed ZnO nanoparticles as the electron injection/transport layer and by optimizing energy levels with the organic hole transport layer. We have successfully demonstrated highly bright red, green, and blue QLEDs showing maximum luminances up to 23,040, 218,800, and 2250 cd/m(2), and external quantum efficiencies of 7.3, 5.8, and 1.7%, respectively. It is also noticeable that they showed turn-on voltages as low as the bandgap energy of each QD and long operational lifetime, mainly attributed to the direct exciton recombination within QDs through the inverted device structure. These results signify a remarkable progress in QLEDs and offer a practicable platform for the realization of QD-based full-color displays and lightings.


Nature Communications | 2013

Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes

Wan Ki Bae; Young Shin Park; Jaehoon Lim; Donggu Lee; Lazaro A. Padilha; Hunter McDaniel; Istvan Robel; Changhee Lee; Jeffrey M. Pietryga; Victor I. Klimov

Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection.


ACS Nano | 2013

Controlled Alloying of the Core–Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination

Wan Ki Bae; Lazaro A. Padilha; Young Shin Park; Hunter McDaniel; Istvan Robel; Jeffrey M. Pietryga; Victor I. Klimov

The influence of a CdSexS1-x interfacial alloyed layer on the photophysical properties of core/shell CdSe/CdS nanocrystal quantum dots (QDs) is investigated by comparing reference QDs with a sharp core/shell interface to alloyed structures with an intermediate CdSexS1-x layer at the core/shell interface. To fully realize the structural contrast, we have developed two novel synthetic approaches: a method for fast CdS-shell growth, which results in an abrupt core/shell boundary (no intentional or unintentional alloying), and a method for depositing a CdSexS1-x alloy layer of controlled composition onto the CdSe core prior to the growth of the CdS shell. Both types of QDs possess similar size-dependent single-exciton properties (photoluminescence energy, quantum yield, and decay lifetime). However the alloyed QDs show a significantly longer biexciton lifetime and up to a 3-fold increase in the biexciton emission efficiency compared to the reference samples. These results provide direct evidence that the structure of the QD interface has a significant effect on the rate of nonradiative Auger recombination, which dominates biexciton decay. We also observe that the energy gradient at the core-shell interface introduced by the alloyed layer accelerates hole trapping from the shell to the core states, which results in suppression of shell emission. This comparative study offers practical guidelines for controlling multicarrier Auger recombination without a significant effect on either spectral or dynamical properties of single excitons. The proposed strategy should be applicable to QDs of a variety of compositions (including, e.g., infrared-emitting QDs) and can benefit numerous applications from light emitting diodes and lasers to photodetectors and photovoltaics.


Nano Letters | 2010

Multicolored Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films Using Layer-by-Layer Assembly Method

Wan Ki Bae; Jeonghun Kwak; Jaehoon Lim; Donggu Lee; Min Ki Nam; Kookheon Char; Changhee Lee; Seonghoon Lee

A systematic analysis of the exciton-recombination zone within all-quantum dot (QD) multilayer films prepared by a layer-by-layer assembly method was made, using sensing QD layers in QD-based light-emitting diodes (QLEDs). Large area practical multicolored colloidal QLEDs were also demonstrated by patterning and placing variously colored QDs (red, orange, yellow-green, and green) in the exciton-recombination zone.


Chemical Reviews | 2016

Spectroscopic and Device Aspects of Nanocrystal Quantum Dots

Jeffrey M. Pietryga; Young Shin Park; Jaehoon Lim; Wan Ki Bae; Sergio Brovelli; Victor I. Klimov

The field of nanocrystal quantum dots (QDs) is already more than 30 years old, and yet continuing interest in these structures is driven by both the fascinating physics emerging from strong quantum confinement of electronic excitations, as well as a large number of prospective applications that could benefit from the tunable properties and amenability toward solution-based processing of these materials. The focus of this review is on recent advances in nanocrystal research related to applications of QD materials in lasing, light-emitting diodes (LEDs), and solar energy conversion. A specific underlying theme is innovative concepts for tuning the properties of QDs beyond what is possible via traditional size manipulation, particularly through heterostructuring. Examples of such advanced control of nanocrystal functionalities include the following: interface engineering for suppressing Auger recombination in the context of QD LEDs and lasers; Stokes-shift engineering for applications in large-area luminescent solar concentrators; and control of intraband relaxation for enhanced carrier multiplication in advanced QD photovoltaics. We examine the considerable recent progress on these multiple fronts of nanocrystal research, which has resulted in the first commercialized QD technologies. These successes explain the continuing appeal of this field to a broad community of scientists and engineers, which in turn ensures even more exciting results to come from future exploration of this fascinating class of materials.


ACS Nano | 2013

Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots.

Jaehoon Lim; Myeongjin Park; Wan Ki Bae; Donggu Lee; Seonghoon Lee; Changhee Lee; Kookheon Char

We demonstrate bright, efficient, and environmentally benign InP quantum dot (QD)-based light-emitting diodes (QLEDs) through the direct charge carrier injection into QDs and the efficient radiative exciton recombination within QDs. The direct exciton formation within QDs is facilitated by an adoption of a solution-processed, thin conjugated polyelectrolyte layer, which reduces the electron injection barrier between cathode and QDs via vacuum level shift and promotes the charge carrier balance within QDs. The efficient radiative recombination of these excitons is enabled in structurally engineered InP@ZnSeS heterostructured QDs, in which excitons in the InP domain are effectively passivated by thick ZnSeS composition-gradient shells. The resulting QLEDs record 3.46% of external quantum efficiency and 3900 cd m(-2) of maximum brightness, which represent 10-fold increase in device efficiency and 5-fold increase in brightness compared with previous reports. We believe that such a comprehensive scheme in designing device architecture and the structural formulation of QDs provides a reasonable guideline for practical realization of environmentally benign, high-performance QLEDs in the future.


ACS Nano | 2009

Quantum Dot−Block Copolymer Hybrids with Improved Properties and Their Application to Quantum Dot Light-Emitting Devices

Matthias Zorn; Wan Ki Bae; Jeonghun Kwak; Hyemin Lee; Changhee Lee; Rudolf Zentel; Kookheon Char

To combine the optical properties of CdSe@ZnS quantum dots (QDs) with the electrical properties of semiconducting polymers, we prepared QD/polymer hybrids by grafting a block copolymer (BCP) containing thiol-anchoring moieties (poly(para-methyl triphenylamine-b-cysteamine acrylamide)) onto the surfaces of QDs through the ligand exchange procedure. The prepared QD/polymer hybrids possess improved processability such as enhanced solubility in various organic solvents as well as the film formation properties along with the improved colloidal stability derived from the grafted polymer shells. We also demonstrated light-emitting diodes based on QD/polymer hybrids, exhibiting the improved device performance (i.e., 3-fold increase in the external quantum efficiency) compared with the devices prepared by pristine (unmodified) QDs.


ACS Nano | 2009

Placement Control of Nanomaterial Arrays on the Surface-Reconstructed Block Copolymer Thin Films

Jeong Gon Son; Wan Ki Bae; Huiman Kang; Paul F. Nealey; Kookheon Char

We present a control strategy for the facile placement of densely packed nanomaterial arrays (i.e., nanoparticles and nanorods) on surface reconstructed polystyrene-block-poly(methyl methacrylate) thin film patterns. The surface reconstruction of perpendicularly oriented block copolymer thin films, which were produced by a treatment with selective solvent vapors for both blocks, created the topographical nanopatterns with enough height contrast for nanoparticle deposition without the need for additional selective etching of a single block domain. The deposition method of nanomaterials was also optimized, and densely packed one- and two-dimensional nanomaterials arrays in the grooves of the block copolymer film patterns were fabricated efficiently. Then, we demonstrated that height contrast of the surface reconstructed block copolymer films could be reversed by electron beam irradiation resulting in nanomaterial arrays placed at the mesa phase of the nanopatterns. On the basis of this nanomaterial placement control strategy, dual nanomaterial arrays on a single block copolymer pattern were also realized.


Advanced Materials | 2014

R/G/B/Natural White Light Thin Colloidal Quantum Dot‐Based Light‐Emitting Devices

Wan Ki Bae; Jaehoon Lim; Donggu Lee; Myeongjin Park; Hyunkoo Lee; Jeonghun Kwak; Kookheon Char; Changhee Lee; Seonghoon Lee

Bright, low-voltage driven colloidal quantum dot (QD)-based white light-emitting devices (LEDs) with practicable device performances are enabled by the direct exciton formation within quantum-dot active layers in a hybrid device structure. Detailed device characterization reveals that white-QLEDs can be rationalized as a parallel circuit, in which different QDs are connected through the same set of electrically common organic and inorganic charge transport layers.


ACS Nano | 2012

Generalized Synthesis of Hybrid Metal–Semiconductor Nanostructures Tunable from the Visible to the Infrared

Bishnu P. Khanal; Anshu Pandey; Liang Li; Qianglu Lin; Wan Ki Bae; Hongmei Luo; Victor I. Klimov; Jeffrey M. Pietryga

Hybrid superstructures allow a convenient route to the development of materials with multiple functionalities (e.g., sensor, marker, conductor) out of monofunctional (e.g., excitonic, plasmonic) building blocks. This work describes a general synthetic route to the preparation of metal|dielectric|quantum dot hybrid superstructures that have excitonic and plasmonic resonances independently tunable from the ultraviolet to the mid-infrared spectral region. We demonstrate that structural tuning can be used to control intercomponent coupling leading to the emergence of unique optical properties. We illustrate this capability by demonstrating single- and multicolor emission from coupled systems, and a significant enhancement of two-photon absorption cross sections of quantum dots. Such properties in a robust yet dispersible particle can be useful in a number of applications including bioimaging and microscopy, and in optoelectronic devices, as well as serve as a platform for fundamental studies of metal-semiconductor interactions.

Collaboration


Dive into the Wan Ki Bae's collaboration.

Top Co-Authors

Avatar

Changhee Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Victor I. Klimov

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jaehoon Lim

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Seonghoon Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Pietryga

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeonghun Kwak

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Donggu Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Myeongjin Park

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge