Wan Seok Yang
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wan Seok Yang.
Cell | 2012
Scott J. Dixon; Kathryn M. Lemberg; Michael R. Lamprecht; Rachid Skouta; Eleina M. Zaitsev; Caroline Gleason; Darpan N. Patel; Andras J. Bauer; Alexandra M. Cantley; Wan Seok Yang; Barclay Morrison; Brent R. Stockwell
Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration.
Cell | 2014
Wan Seok Yang; Rohitha SriRamaratnam; Matthew Welsch; Kenichi Shimada; Rachid Skouta; Vasanthi Viswanathan; Jaime H. Cheah; Paul A. Clemons; Alykhan F. Shamji; Clary B. Clish; Lewis M. Brown; Albert W. Girotti; Virginia W. Cornish; Stuart L. Schreiber; Brent R. Stockwell
Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death.
Nature | 2007
Nicholas Yagoda; Moritz von Rechenberg; Elma Zaganjor; Andras J. Bauer; Wan Seok Yang; Daniel J. Fridman; Adam J. Wolpaw; Inese Smukste; John M. Peltier; J. Jay Boniface; Richard D. Smith; Stephen L. Lessnick; Sudhir Sahasrabudhe; Brent R. Stockwell
Therapeutics that discriminate between the genetic makeup of normal cells and tumour cells are valuable for treating and understanding cancer. Small molecules with oncogene-selective lethality may reveal novel functions of oncoproteins and enable the creation of more selective drugs. Here we describe the mechanism of action of the selective anti-tumour agent erastin, involving the RAS–RAF–MEK signalling pathway functioning in cell proliferation, differentiation and survival. Erastin exhibits greater lethality in human tumour cells harbouring mutations in the oncogenes HRAS, KRAS or BRAF. Using affinity purification and mass spectrometry, we discovered that erastin acts through mitochondrial voltage-dependent anion channels (VDACs)—a novel target for anti-cancer drugs. We show that erastin treatment of cells harbouring oncogenic RAS causes the appearance of oxidative species and subsequent death through an oxidative, non-apoptotic mechanism. RNA-interference-mediated knockdown of VDAC2 or VDAC3 caused resistance to erastin, implicating these two VDAC isoforms in the mechanism of action of erastin. Moreover, using purified mitochondria expressing a single VDAC isoform, we found that erastin alters the permeability of the outer mitochondrial membrane. Finally, using a radiolabelled analogue and a filter-binding assay, we show that erastin binds directly to VDAC2. These results demonstrate that ligands to VDAC proteins can induce non-apoptotic cell death selectively in some tumour cells harbouring activating mutations in the RAS–RAF–MEK pathway.
Chemistry & Biology | 2008
Wan Seok Yang; Brent R. Stockwell
We screened small molecules to identify two compounds, which we named RSL3 and RSL5, that have increased lethality in the presence of oncogenic RAS. Counter screening with biologically active compounds defined aspects of the mechanism of action for RSL3 and RSL5, such as a nonapoptotic, MEK-dependent, and iron-dependent oxidative cell death. Erastin, a previously reported compound with RAS-selective lethality, showed similar properties. RNA interference experiments targeting voltage-dependent anion channel 3 (VDAC3), a target of erastin, demonstrated that RSL5 is a scaffold that acts through VDACs to activate the observed pathway. RSL3 activated a similar death mechanism but in a VDAC-independent manner. We found that cells transformed with oncogenic RAS have increased iron content relative to their normal cell counterparts through upregulation of transferrin receptor 1 and downregulation of ferritin heavy chain 1 and ferritin light chain.
Trends in Cell Biology | 2016
Wan Seok Yang; Brent R. Stockwell
Ferroptosis is a regulated form of cell death driven by loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and subsequent accumulation of lipid-based reactive oxygen species (ROS), particularly lipid hydroperoxides. This form of iron-dependent cell death is genetically, biochemically, and morphologically distinct from other cell death modalities, including apoptosis, unregulated necrosis, and necroptosis. Ferroptosis is regulated by specific pathways and is involved in diverse biological contexts. Here we summarize the discovery of ferroptosis, the mechanism of ferroptosis regulation, and its increasingly appreciated relevance to both normal and pathological physiology.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Wan Seok Yang; Katherine Kim; Michael M. Gaschler; Milesh Patel; Mikhail S. Shchepinov; Brent R. Stockwell
Significance Ferroptosis is a regulated form of cell death induced by loss of glutathione peroxidase 4 (GPX4) phospholipid peroxidase activity and lethal accumulation of reactive oxygen species. Small-molecule inhibitors of GPX4 induce ferroptosis; however, the interaction between these inhibitors and GPX4 has remained elusive, as has the identity of the reactive oxygen species that drive execution of ferroptosis. We identified here a ligand-binding site on GPX4 and determined the specific lipids oxidized during ferroptosis. We further identified two key drivers of lipid peroxidation during ferroptosis: lipoxygenases and phosphorylase kinase G2. These findings reveal a previously enigmatic mechanism of ferroptotic lipid peroxide generation and suggest new strategies for pharmacological control of ferroptosis and diseases associated with this mode of cell death. Ferroptosis is form of regulated nonapoptotic cell death that is involved in diverse disease contexts. Small molecules that inhibit glutathione peroxidase 4 (GPX4), a phospholipid peroxidase, cause lethal accumulation of lipid peroxides and induce ferroptotic cell death. Although ferroptosis has been suggested to involve accumulation of reactive oxygen species (ROS) in lipid environments, the mediators and substrates of ROS generation and the pharmacological mechanism of GPX4 inhibition that generates ROS in lipid environments are unknown. We report here the mechanism of lipid peroxidation during ferroptosis, which involves phosphorylase kinase G2 (PHKG2) regulation of iron availability to lipoxygenase enzymes, which in turn drive ferroptosis through peroxidation of polyunsaturated fatty acids (PUFAs) at the bis-allylic position; indeed, pretreating cells with PUFAs containing the heavy hydrogen isotope deuterium at the site of peroxidation (D-PUFA) prevented PUFA oxidation and blocked ferroptosis. We further found that ferroptosis inducers inhibit GPX4 by covalently targeting the active site selenocysteine, leading to accumulation of PUFA hydroperoxides. In summary, we found that PUFA oxidation by lipoxygenases via a PHKG2-dependent iron pool is necessary for ferroptosis and that the covalent inhibition of the catalytic selenocysteine in Gpx4 prevents elimination of PUFA hydroperoxides; these findings suggest new strategies for controlling ferroptosis in diverse contexts.
Cell | 2015
Jung Hoon Woo; Yishai Shimoni; Wan Seok Yang; Prem S. Subramaniam; Archana Iyer; Paola Nicoletti; María Rodríguez Martínez; Gonzalo Lopez; Michela Mattioli; Ronald Realubit; Charles Karan; Brent R. Stockwell; Mukesh Bansal
Genome-wide identification of the mechanism of action (MoA) of small-molecule compounds characterizing their targets, effectors, and activity modulators represents a highly relevant yet elusive goal, with critical implications for assessment of compound efficacy and toxicity. Current approaches are labor intensive and mostly limited to elucidating high-affinity binding target proteins. We introduce a regulatory network-based approach that elucidates genome-wide MoA proteins based on the assessment of the global dysregulation of their molecular interactions following compound perturbation. Analysis of cellular perturbation profiles identified established MoA proteins for 70% of the tested compounds and elucidated novel proteins that were experimentally validated. Finally, unknown-MoA compound analysis revealed altretamine, an anticancer drug, as an inhibitor of glutathione peroxidase 4 lipid repair activity, which was experimentally confirmed, thus revealing unexpected similarity to the activity of sulfasalazine. This suggests that regulatory network analysis can provide valuable mechanistic insight into the elucidation of small-molecule MoA and compound similarity.
Genome Biology | 2008
Wan Seok Yang; Brent R. Stockwell
BackgroundKinases are under extensive investigation as targets for drug development. Discovering novel kinases whose inhibition induces cancer-cell-selective lethality would be of value. Recent advances in RNA interference have enabled the realization of this goal.ResultsWe screened 5,760 short hairpin RNA clones targeting the human kinome to detect human kinases on which cancer cells are more dependent than normal cells. We employed a two-step screening strategy using human sarcoma cell lines and human fibroblast-derived isogenic cell lines, and found that short hairpin RNAs targeting CSNK1E, a clock gene that regulates circadian rhythms, can induce selective growth inhibition in engineered tumor cells. Analysis of gene-expression data revealed that CSNK1E is overexpressed in several cancer tissue samples examined compared to non-tumorigenic normal tissue, suggesting a positive role of CSNK1E in neogenesis or maintenance. Treatment with IC261, a kinase domain inhibitor of casein kinase 1-epsilon (CK1ε), a protein product of CSNK1E, showed a similar degree of cancer-cell-selective growth inhibition. In a search for substrates of CK1ε that mediate IC261-induced growth inhibition, we discovered that knocking down PER2, another clock gene involved in circadian rhythm control, rescues IC261-induced growth inhibition.ConclusionWe identified CK1ε as a potential target for developing anticancer reagents with a high therapeutic index. These data support the hypothesis that circadian clock genes can control the cell cycle and cell survival signaling, and emphasize a central role of CK1ε and PERIOD2 in linking these systems.
Nature | 2017
Vasanthi Viswanathan; Matthew J. Ryan; Harshil Dhruv; Shubhroz Gill; Ossia M. Eichhoff; Brinton Seashore-Ludlow; Samuel D. Kaffenberger; John K. Eaton; Kenichi Shimada; Andrew J. Aguirre; Srinivas R. Viswanathan; Shrikanta Chattopadhyay; Pablo Tamayo; Wan Seok Yang; Matthew G. Rees; Sixun Chen; Zarko V. Boskovic; Sarah Javaid; Cherrie Huang; Xiaoyun Wu; Yuen Yi Tseng; Elisabeth Roider; Dong Gao; James M. Cleary; Brian M. Wolpin; Jill P. Mesirov; Daniel A. Haber; Jeffrey A. Engelman; Jesse S. Boehm; Joanne Kotz
Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial–mesenchymal transition in epithelial-derived carcinomas, TGFβ-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.
Nature Chemical Biology | 2016
Kenichi Shimada; Rachid Skouta; Anna Kaplan; Wan Seok Yang; Miki Hayano; Scott J. Dixon; Lewis M. Brown; Carlos A. Valenzuela; Adam J. Wolpaw; Brent R. Stockwell
Apoptosis is known as programmed cell death. Some non-apoptotic cell death is increasingly recognized as genetically controlled, or ‘regulated’. However, the full extent and diversity of these alternative cell death mechanisms remains uncharted. Here, we surveyed the landscape of pharmacologically-accessible cell death mechanisms. Of 56 caspase-independent lethal compounds, modulatory profiling revealed ten inducing three types of regulated non-apoptotic cell death. Lead optimization of one of the ten resulted in the discovery of FIN56, a specific inducer of ferroptosis. Ferroptosis occurs when the lipid repair enzyme GPX4 is inhibited. We found that FIN56 promotes degradation of GPX4. We performed chemoproteomics to reveal that FIN56 also binds to and activates squalene synthase, an enzyme involved in the cholesterol synthesis, in a manner independent of GPX4 degradation. These discoveries reveal that dysregulation of lipid metabolism is associated with ferroptosis. This systematic approach is a means to discover and characterize novel cell death phenotypes.