Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wanda K. O'Neal is active.

Publication


Featured researches published by Wanda K. O'Neal.


Nature Medicine | 2004

Increased airway epithelial Na + absorption produces cystic fibrosis-like lung disease in mice

Marcus A. Mall; Barbara R. Grubb; Jack R. Harkema; Wanda K. O'Neal; Richard C. Boucher

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene result in defective epithelial cAMP-dependent Cl− secretion and increased airway Na+ absorption. The mechanistic links between these altered ion transport processes and the pathogenesis of cystic fibrosis lung disease, however, are unclear. To test the hypothesis that accelerated Na+ transport alone can produce cystic fibrosis-like lung disease, we generated mice with airway-specific overexpression of epithelial Na+ channels (ENaC). Here we show that increased airway Na+ absorption in vivo caused airway surface liquid (ASL) volume depletion, increased mucus concentration, delayed mucus transport and mucus adhesion to airway surfaces. Defective mucus transport caused a severe spontaneous lung disease sharing features with cystic fibrosis, including mucus obstruction, goblet cell metaplasia, neutrophilic inflammation and poor bacterial clearance. We conclude that increasing airway Na+ absorption initiates cystic fibrosis-like lung disease and produces a model for the study of the pathogenesis and therapy of this disease.


Nature | 2014

Muc5b is required for airway defence

Michelle G. Roy; Alessandra Livraghi-Butrico; Ashley A. Fletcher; Melissa M. McElwee; Scott E. Evans; Ryan M. Boerner; Samantha N. Alexander; Lindsey K. Bellinghausen; Alfred S. Song; Youlia Petrova; Michael J. Tuvim; Roberto Adachi; Irlanda Romo; Andrea S. Bordt; M. Gabriela Bowden; Joseph H. Sisson; Prescott G. Woodruff; David J. Thornton; Karine Rousseau; Maria Miguelina De La Garza; Seyed Javad Moghaddam; Harry Karmouty-Quintana; Michael R. Blackburn; Scott M. Drouin; C. William Davis; Kristy A. Terrell; Barbara R. Grubb; Wanda K. O'Neal; Sonia C. Flores; Adela Cota-Gomez

Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b−/− mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.


Molecular and Cellular Biology | 2006

Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65

Elizabeth M. Morin-Kensicki; Brian N. Boone; Michael Howell; Jaclyn R. Stonebraker; Jeremy Teed; James G. Alb; Terry Magnuson; Wanda K. O'Neal; Sharon L. Milgram

ABSTRACT YAP is a multifunctional adapter protein and transcriptional coactivator with several binding partners well described in vitro and in cell culture. To explore in vivo requirements for YAP, we generated mice carrying a targeted disruption of the Yap gene. Homozygosity for the Yap tm1Smil allele (Yap −/− ) caused developmental arrest around E8.5. Phenotypic characterization revealed a requirement for YAP in yolk sac vasculogenesis. Yolk sac endothelial and erythrocyte precursors were specified as shown by histology, PECAM1 immunostaining, and alpha globin expression. Nonetheless, development of an organized yolk sac vascular plexus failed in Yap −/− embryos. In striking contrast, vasculogenesis proceeded in both the allantois and the embryo proper. Mutant embryos showed patterned gene expression domains along the anteroposterior neuraxis, midline, and streak/tailbud. Despite this evidence of proper patterning and tissue specification, Yap −/− embryos showed developmental perturbations that included a notably shortened body axis, convoluted anterior neuroepithelium, caudal dysgenesis, and failure of chorioallantoic fusion. These results reveal a vital requirement for YAP in the developmental processes of yolk sac vasculogenesis, chorioallantoic attachment, and embryonic axis elongation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium.

Raymond D. Coakley; Barbara R. Grubb; Anthony M. Paradiso; J. T. Gatzy; Larry G. Johnson; Sylvia M. Kreda; Wanda K. O'Neal; Richard C. Boucher

Cystic fibrosis (CF) transmembrane conductance regulator (CFTR)-dependent airway epithelial bicarbonate transport is hypothesized to participate in airway surface liquid pH regulation and contribute to lung defense. We measured pH and ionic composition in apical surface liquid (ASL) on polarized normal (NL) and CF primary bronchial epithelial cell cultures under basal conditions, after cAMP stimulation, and after challenge with luminal acid loads. Under basal conditions, CF epithelia acidified ASL more rapidly than NL epithelia. Two ASL pH regulatory paths that contributed to basal pH were identified in the apical membrane of airway epithelia, and their activities were measured. We detected a ouabain-sensitive (nongastric) H+,K+-ATPase that acidified ASL, but its activity was not different in NL and CF cultures. We also detected the following evidence for a CFTR-dependent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{HCO}}_{3}^{-}\end{equation*}\end{document} secretory pathway that was defective in CF: (i) ASL [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{HCO}}_{3}^{-}\end{equation*}\end{document}] was higher in NL than CF ASL; (ii) activating CFTR with forskolin/3-isobutyl-1-methylxanthine alkalinized NL ASL but acidified CF ASL; and (iii) NL airway epithelia more rapidly and effectively alkalinized ASL in response to a luminal acid challenge than CF epithelia. We conclude that cultured human CF bronchial epithelial pHASL is abnormally regulated under basal conditions because of absent CFTR-dependent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{HCO}}_{3}^{-}\end{equation*}\end{document} secretion and that this defect can lead to an impaired capacity to respond to airway conditions associated with acidification of ASL.


Journal of Biological Chemistry | 2009

Transmembrane Protein 16A (TMEM16A) Is a Ca2+-regulated Cl– Secretory Channel in Mouse Airways

Jason R. Rock; Wanda K. O'Neal; Sherif E. Gabriel; Scott H. Randell; Brian D. Harfe; Richard C. Boucher; Barbara R. Grubb

For almost two decades, it has been postulated that calcium-activated Cl– channels (CaCCs) play a role in airway epithelial Cl– secretion, but until recently, the molecular identity of the airway CaCC(s) was unknown. Recent studies have unequivocally identified TMEM16A as a glandular epithelial CaCC. We have studied the airway bioelectrics of neonatal mice homozygous for a null allele of Tmem16a (Tmem16a–/–) to investigate the role of this channel in Cl– secretion in airway surface epithelium. When compared with wild-type tracheas, the Tmem16a–/– tracheas exhibited a >60% reduction in purinoceptor (UTP)-regulated CaCC activity. Other members of the Tmem16 gene family, including Tmem16f and Tmem16k, were also detected by reverse transcription-PCR in neonatal tracheal epithelium, suggesting that other family members could be considered as contributing to the small residual UTP response. TMEM16A, however, appeared to contribute little to unstimulated Cl– secretion, whereas studies with cystic fibrosis transmembrane conductance regulator (CFTR)-deficient mice and wild-type littermates revealed that unstimulated Cl– secretion reflected ∼50% CFTR activity and ∼50% non-Tmem16a activity. Interestingly, the tracheas of both the Tmem16a–/– and the CFTR–/– mice exhibited similar congenital cartilaginous defects that may reflect a common Cl– secretory defect mediated by the molecularly distinct Cl– channels. Importantly, the residual CaCC activity in Tmem16a–/– mice appeared inadequate for normal airway hydration because Tmem16a–/– tracheas exhibited significant, neonatal, lumenal mucus accumulation. Our data suggest that TMEM16A CaCC-mediated Cl– secretion appears to be necessary for normal airway surface liquid homeostasis.


Human Gene Therapy | 2002

Lethal Toxicity, Severe Endothelial Injury, and a Threshold Effect with High Doses of an Adenoviral Vector in Baboons

Núria Morral; Wanda K. O'Neal; Karen Rice; M. Michelle Leland; Pedro A. Piedra; Estuardo Aguilar-Cordova; K. Dee Carey; Arthur L. Beaudet; Claire Langston

The effects of intravenous administration of a first-generation adenoviral vector expressing beta-galactosidase were compared in two baboons receiving a high dose or lower dose of vector, 1.2 x 10(13) or 1.2 x 10(12) particles/kg, respectively. The high-dose baboon developed acute symptoms, decreased platelet counts, and increased liver enzymes, and became moribund at 48 hr after injection, while the lower-dose baboon developed no symptoms. Expression of the beta-galactosidase transgene was prominent in liver, spleen, and endothelium of the arterial vasculature in the high-dose baboon, but was much more limited and spared the endothelium in the lower-dose baboon. Injury to the vascular endothelium was the most prominent abnormality in the high-dose baboon. Extensive histological studies provide a detailed picture of the pathology associated with a lethal dose of first-generation adenoviral vector in a primate.


Nature Genetics | 2011

Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2

Fred A. Wright; Lisa J. Strug; Vishal K. Doshi; Clayton W. Commander; Scott M. Blackman; Lei Sun; Yves Berthiaume; David J. Cutler; Andreea L Cojocaru; J. Michael Collaco; Mary Corey; Ruslan Dorfman; Katrina A.B. Goddard; Deanna M. Green; Jack W. Kent; Ethan M. Lange; Seunggeun Lee; Weili Li; Jingchun Luo; Gregory Mayhew; Kathleen M. Naughton; Rhonda G. Pace; Peter D. Paré; Johanna M. Rommens; Andrew J. Sandford; Jaclyn R. Stonebraker; Wei Sun; Chelsea Taylor; Lori L. Vanscoy; Fei Zou

A combined genome-wide association and linkage study was used to identify loci causing variation in cystic fibrosis lung disease severity. We identified a significant association (P = 3.34 × 10−8) near EHF and APIP (chr11p13) in p.Phe508del homozygotes (n = 1,978). The association replicated in p.Phe508del homozygotes (P = 0.006) from a separate family based study (n = 557), with P = 1.49 × 10−9 for the three-study joint meta-analysis. Linkage analysis of 486 sibling pairs from the family based study identified a significant quantitative trait locus on chromosome 20q13.2 (log10 odds = 5.03). Our findings provide insight into the causes of variation in lung disease severity in cystic fibrosis and suggest new therapeutic targets for this life-limiting disorder.


The Journal of General Physiology | 2004

Voltage-dependent Anion Channel-1 (VDAC-1) Contributes to ATP Release and Cell Volume Regulation in Murine Cells

Seiko F. Okada; Wanda K. O'Neal; Pingbo Huang; Robert A. Nicholas; Lawrence E. Ostrowski; William J. Craigen; Eduardo R. Lazarowski; Richard C. Boucher

Extracellular ATP regulates several elements of the mucus clearance process important for pulmonary host defense. However, the mechanisms mediating ATP release onto airway surfaces remain unknown. Mitochondrial voltage-dependent anion channels (mt-VDACs) translocate a variety of metabolites, including ATP and ADP, across the mitochondrial outer membrane, and a plasmalemmal splice variant (pl-VDAC-1) has been proposed to mediate ATP translocation across the plasma membrane. We tested the involvement of VDAC-1 in ATP release in a series of studies in murine cells. First, the full-length coding sequence was cloned from a mouse airway epithelial cell line (MTE7b−) and transfected into NIH 3T3 cells, and pl-VDAC-1-transfected cells exhibited higher rates of ATP release in response to medium change compared with mock-transfected cells. Second, ATP release was compared in cells isolated from VDAC-1 knockout [VDAC-1 (−/−)] and wild-type (WT) mice. Fibroblasts from VDAC-1 (−/−) mice released less ATP than WT mice in response to a medium change. Well-differentiated cultures from nasal and tracheal epithelia of VDAC-1 (−/−) mice exhibited less ATP release in response to luminal hypotonic challenge than WT mice. Confocal microscopy studies revealed that cell volume acutely increased in airway epithelia from both VDAC-1 (−/−) and WT mice after luminal hypotonic challenge, but VDAC-1 (−/−) cells exhibited a slower regulatory volume decrease (RVD) than WT cells. Addition of ATP or apyrase to the luminal surface of VDAC-1 (−/−) or WT cultures with hypotonic challenge produced similar initial cell height responses and RVD kinetics in both cell types, suggesting that involvement of VDAC-1 in RVD is through ATP release. Taken together, these studies suggest that VDAC-1, directly or indirectly, contributes to ATP release from murine cells. However, the observation that VDAC-1 knockout cells released a significant amount of ATP suggests that other molecules also play a role in this function.


Journal of Biological Chemistry | 2011

Rho Signaling Regulates Pannexin 1-mediated ATP Release from Airway Epithelia

Lucia Seminario-Vidal; Seiko F. Okada; Juliana I. Sesma; Silvia M. Kreda; Catharina van Heusden; Yunxiang Zhu; Lisa C. Jones; Wanda K. O'Neal; Silvia Penuela; Dale W. Laird; Richard C. Boucher; Eduardo R. Lazarowski

ATP released from airway epithelial cells promotes purinergic receptor-regulated mucociliary clearance activities necessary for innate lung defense. Cell swelling-induced membrane stretch/strain is a common stimulus that promotes airway epithelial ATP release, but the mechanisms transducing cell swelling into ATP release are incompletely understood. Using knockdown and knockout approaches, we tested the hypothesis that pannexin 1 mediates ATP release from hypotonically swollen airway epithelia and investigated mechanisms regulating this activity. Well differentiated primary cultures of human bronchial epithelial cells subjected to hypotonic challenge exhibited enhanced ATP release, which was paralleled by the uptake of the pannexin probe propidium iodide. Both responses were reduced by pannexin 1 inhibitors and by knocking down pannexin 1. Importantly, hypotonicity-evoked ATP release from freshly excised tracheas and dye uptake in primary tracheal epithelial cells were impaired in pannexin 1 knockout mice. Hypotonicity-promoted ATP release and dye uptake in primary well differentiated human bronchial epithelial cells was accompanied by RhoA activation and myosin light chain phosphorylation and was reduced by the RhoA dominant negative mutant RhoA(T19N) and Rho and myosin light chain kinase inhibitors. ATP release and Rho activation were reduced by highly selective inhibitors of transient receptor potential vanilloid 4 (TRPV4). Lastly, knocking down TRPV4 impaired hypotonicity-evoked airway epithelial ATP release. Our data suggest that TRPV4 and Rho transduce cell membrane stretch/strain into pannexin 1-mediated ATP release in airway epithelia.


The Journal of Physiology | 2007

Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells

Silvia M. Kreda; Seiko F. Okada; Catharina van Heusden; Wanda K. O'Neal; Sherif E. Gabriel; Lubna H. Abdullah; C. William Davis; Richard C. Boucher; Eduardo R. Lazarowski

The efficiency of the mucociliary clearance (MCC) process that removes noxious materials from airway surfaces depends on the balance between mucin secretion, airway surface liquid (ASL) volume, and ciliary beating. Effective mucin dispersion into ASL requires salt and water secretion onto the mucosal surface, but how mucin secretion rate is coordinated with ion and, ultimately, water transport rates is poorly understood. Several components of MCC, including electrolyte and water transport, are regulated by nucleotides in the ASL interacting with purinergic receptors. Using polarized monolayers of airway epithelial Calu‐3 cells, we investigated whether mucin secretion was accompanied by nucleotide release. Electron microscopic analyses of Calu‐3 cells identified subapical granules that resembled goblet cell mucin granules. Real‐time confocal microscopic analyses revealed that subapical granules, labelled with FM 1‐43 or quinacrine, were competent for Ca2+‐regulated exocytosis. Granules containing MUC5AC were apically secreted via Ca2+‐regulated exocytosis as demonstrated by combined immunolocalization and slot blot analyses. In addition, Calu‐3 cells exhibited Ca2+‐regulated apical release of ATP and UDP‐glucose, a substrate of glycosylation reactions within the secretory pathway. Neither mucin secretion nor ATP release from Calu‐3 cells were affected by activation or inhibition of the cystic fibrosis transmembrane conductance regulator. In SPOC1 cells, an airway goblet cell model, purinergic P2Y2 receptor‐stimulated increase of cytosolic Ca2+ concentration resulted in secretion of both mucins and nucleotides. Our data suggest that nucleotide release is a mechanism by which mucin‐secreting goblet cells produce paracrine signals for mucin hydration within the ASL.

Collaboration


Dive into the Wanda K. O'Neal's collaboration.

Top Co-Authors

Avatar

Richard C. Boucher

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Barbara R. Grubb

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Scott H. Randell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Alessandra Livraghi-Butrico

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Arthur L. Beaudet

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Eduardo R. Lazarowski

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaclyn R. Stonebraker

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge