Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wanying Wu is active.

Publication


Featured researches published by Wanying Wu.


Molecular & Cellular Proteomics | 2008

Proteomics Characterization of the Cytotoxicity Mechanism of Ganoderic Acid D and Computer-automated Estimation of the Possible Drug Target Network

Qing-Xi Yue; Zhi-Wei Cao; Shu-Hong Guan; Xiao-Hui Liu; Lin Tao; Wanying Wu; Yixue Li; Pengyuan Yang; Xuan Liu; Dean Guo

Triterpenes isolated from Ganoderma lucidum could inhibit the growth of numerous cancer cell lines and were thought to be the basis of the anticancer effects of G. lucidum. Ganoderic acid D (GAD) is one of the major components in Ganoderma triterpenes. GAD treatment for 48 h inhibited the proliferation of HeLa human cervical carcinoma cells with an IC50 value of 17.3 ± 0.3 μm. Flow cytometric analysis and DNA fragmentation analysis indicated that GAD induced G2/M cell cycle arrest and apoptosis. To identify the cellular targets of GAD, two-dimensional gel electrophoresis was performed, and proteins altered in expressional level after GAD exposure of cells were identified by MALDI-TOF MS/MS. The regulation of proteins was also confirmed by Western blotting. The cytotoxic effect of GAD was associated with regulated expression of 21 proteins. Furthermore these possible GAD target-related proteins were evaluated by an in silico drug target searching program, INVDOCK. The INVDOCK analysis results suggested that GAD could bind six isoforms of 14-3-3 protein family, annexin A5, and aminopeptidase B. The direct binding affinity of GAD toward 14-3-3 ζ was confirmed in vitro using surface plasmon resonance biosensor analysis. In addition, the intensive study of functional association among these 21 proteins revealed that 14 of them were closely related in the protein-protein interaction network. They had been found to either interact with each other directly or associate with each other via only one intermediate protein from previous protein-protein interaction experimental results. When the network was expanded to a further interaction outward, all 21 proteins could be included into one network. In this way, the possible network associated with GAD target-related proteins was constructed, and the possible contribution of these proteins to the cytotoxicity of GAD is discussed in this report.


Journal of Cellular Physiology | 2012

Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90.

Wen-Bo Wang; Li-Xing Feng; Qing-Xi Yue; Wanying Wu; Shu-Hong Guan; Baohong Jiang; Min Yang; Xuan Liu; De-An Guo

In the present study, we found that celastrol, a natural compound with well‐known apoptosis‐inducing effect, could also induce paraptosis‐like cytoplasmic vacuolization in cancer cell lines including HeLa cells, A549 cells and PC‐3 cells derived from cervix, lung and prostate, respectively. Further study using HeLa cells indicated that the vacuoles induced by celastrol might be derived from dilation of endoplasmic reticulum. And, in celastrol‐treated cells, markers of autophagy such as transformation of microtubule‐associated protein 1 light chain 3 (LC3)I to LC3II and LC3 punctates formation were identified. Interestingly, autophagy inhibitors could not interrupt but enhance the induction of cytoplasmic vacuolization. Furthermore, MAPK pathways were activated by celastrol and inhibitors of MEK and p38 pathways could prevent the formation of cytoplasmic vacuolization. Celastrol treatment also induced G2/M cell cycle arrest and apoptosis in HeLa cells. In conclusion, celastrol induced a kind of paraptosis accompanied by autophagy and apoptosis in cancer cells. The coincidence of apoptosis and autophagy together with paraptosis might contribute to the unique characteristics of paraptosis in celastrol‐treated cells such as the dependence of paraptosis on MAPK pathways and dynamic change of LC3 proteins. Both paraptosis and apoptosis could contribute to the cell death induced by celastrol while autophagy might serve as a kind of survival mechanism. The potency of celastrol to induce paraptosis, apoptosis and autophagy at the same dose might be related to its capability to affect a variety of pathways including proteasome, ER stress and Hsp90. J. Cell. Physiol. 227: 2196–2206, 2012.


Phytochemistry | 2014

Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity.

Wenzhi Yang; Ying Hu; Wanying Wu; Min Ye; De-An Guo

The Panax genus is a crucial source of natural medicines that has benefited human health for a long time. Three valuable medicinal herbs, namely Panax ginseng, Panax quinquefolius, and Panax notoginseng, have received considerable interest due to their extensive application in clinical therapy, healthcare products, and as foods and food additives world-wide. Panax species are known to contain abundant levels of saponins, also dubbed ginsenosides, which refer to a series of dammarane or oleanane type triterpenoid glycosides. These saponins exhibit modulatory effects to the central nervous system and beneficial effects to patients suffering from cardiovascular diseases, and also have anti-diabetic and anti-tumor properties. To the end of 2012, at least 289 saponins were reported from eleven different Panax species. This comprehensive review describes the advances in the phytochemistry of the genus Panax for the period 1963-2012, based on the 134 cited references. The reported saponins can be classified into protopanaxadiol, protopanaxatriol, octillol, oleanolic acid, C17 side-chain varied, and miscellaneous subtypes, according to structural differences in sapogenins. The investigational history of Panax is also reviewed, with special attention being paid to the structural features of the six different subtypes, together with their (1)H and (13)C NMR spectroscopic characteristics which are useful for determining their structures and absolute configuration.


Journal of Chromatography A | 2011

Ruggedness and robustness of conversion factors in method of simultaneous determination of multi-components with single reference standard

Jinjun Hou; Wanying Wu; Juan Da; Shuai Yao; Hua-Li Long; Zhou Yang; Lu-Ying Cai; Min Yang; Xuan Liu; Baohong Jiang; De-An Guo

Single standard to determine multi-components (SSDMC) is a novel and rational method for quality control of botanical products and traditional Chinese medicines (TCMs). However, it is restricted to wide application due to unknown fluctuation in conversion factors when it is performed in different laboratories. To evaluate the fluctuations of conversion factors, we selected Salvia miltiorrhiza as an example to determine three components of tanshinones by SSDMC method. Then ruggedness and robustness test were adopted to comprehensively investigate three kinds of factors that may influence stability of conversion factors, which were related with environmental parametric variables, operational parametric variables and peak measurement parametric variables. Nested-factorial-design was used to perform ruggedness tests. One-variable-at-a-time (OVAT) procedure and Plackett-Burman (PB) design were both used in robustness test. The results showed that stability of conversion factors was principally related with accuracy of wavelength of UV detector, peak measurement parameters and concentration of standard solution. The acceptable range of conversion factors was obtained from robustness test. Our results showed that conversion factors were inevitable to change, but when key parameters were well controlled, the range of its fluctuation was acceptable and the SSDMC method could be used widely in different laboratories.


Food and Chemical Toxicology | 2009

Tanshinone IIA sodium sulfonate protects against cardiotoxicity induced by doxorubicin in vitro and in vivo.

Baohong Jiang; Lin Zhang; Yingchun Wang; Ming Li; Wanying Wu; Shu-Hong Guan; Xuan Liu; Min Yang; Junchen Wang; De-An Guo

Although doxorubicin (DXR) is an effective antineoplastic agent; the serious cardiotoxicity mediated by the production of reactive oxygen species has remained a considerable clinical problem. Our hypothesis is that tanshinone IIA sodium sulfonate (TSNIIA-SS), which holds significant affects on cardioprotection in clinic, protects against DXR-induced cardiotoxicity. In vitro investigation on H9c2 cell line, as well as in vivo study in animal model of DXR-induced chronic cardiomyopathy were performed. TSNIIA-SS significantly increased cell viability and ameliorated apoptosis of DXR-injured H9c2 cells using CCK-8 assay and Hoechst 33342 stain respectively. Furthermore, the cardio-protective effects of TSNIIA-SS were confirmed with decreasing ST-interval and QRS interval by electrocardiography (ECG); improving appearance of myocardium with haematoxylin and eosin (H&E) stain; increasing myocardial tensile strength using tension to rupture (TTR) assay and decreasing fibrosis through picric-sirius red staining comparing with those receiving DXR alone. These data have provided the considerable evidences that TSNIIA-SS is a protective agent against DXR-induced cardiac injury.


Journal of Chromatography A | 2012

Comparison of two officinal Chinese pharmacopoeia species of Ganoderma based on chemical research with multiple technologies and chemometrics analysis.

Juan Da; Wanying Wu; Jinjun Hou; Hua-Li Long; Shuai Yao; Zhou Yang; Lu-Ying Cai; Min Yang; Baohong Jiang; Xuan Liu; Chun-Ru Cheng; Yi-Feng Li; De-An Guo

AIM OF THE STUDY To investigate the chemical differences between Ganoderma lucidum (G. lucidum, Chizhi) and Ganoderma sinense (G. sinense, Zizhi). MATERIALS AND METHODS Thirty two batches of commercial Ganoderma samples were collected, including 20 batches of G. lucidum and 12 batches of G. sinense cultivated in different geographical regions. Chemical substances in aqueous extract and alcoholic extract, mainly polysaccharides and triterpenes respectively, were investigated. Determination of polysaccharides was carried out with a high performance liquid chromatography with an variable wavelength detector. Meanwhile, analysis of triterpenes were performed on an ultraviolet spectrophotometer, an ultra performance liquid chromatography and a rapid resolution liquid chromatograph combined with an electrospray ionization mass spectrometer. Chromatograms and spectra for all batches and reference standards of main components were obtained and used for direct comparison. Further discussion was made on the basis of the result of principal component analysis (PCA). RESULTS Significant difference of triterpenes was shown between G. lucidum and G. sinense. In 20 batches of G. lucidum, 12 main components, including eight ganoderic acids and four ganoderenic acids were identified and ten of them were quantitatively determined, with the total content from 0.249% to 0.690%. However, none of those triterpenes was found in either batch of G. sinense. As for constituents of polysaccharides, seven monosaccharides were identified and four main components among them were quantitatively determined. Difference of polysaccharides was not directly observed, but latent information was revealed by PCA and the discrimination became feasible. CONCLUSIONS G. lucidum and G. sinense were chemically different, which might result in pharmacological distinction. Preparations of traditional Chinese medicine (TCM) from Ganoderma should make accurate specification on the origin of species.


The American Journal of Chinese Medicine | 2008

Interaction of Salvianolic Acids and Notoginsengnosides in Inhibition of ADP-Induced Platelet Aggregation

Yan Yao; Wanying Wu; Ai-Hua Liu; Shao-Sheng Deng; Kaishun Bi; Xuan Liu; De-An Guo

Salvia miltiorrhiza and Panax notoginseng were both considered to be beneficial to cardiovascular diseases in traditional Chinese medicine and often used in combination. To examine the possible interaction between them, the effects of the active fractions of these two herbs, salvianolic acids (SA) and notoginsengnosides (NG), on platelet aggregation were checked respectively or in combination in vitro and in vivo. Both the platelet aggregation of platelet rich plasma (PRP) and washed platelet after ADP induction were checked. In vitro study showed that both SA and NG had an inhibitory effect on platelet aggregation. However, there is no synergistic effect of the combination of SA and NG in vitro. In vivo study showed that i.g. 550 mg/kg/day SA or NG for 5 days could significantly inhibit ADP-induced platelet aggregation of PRP. Moreover, combination of SA and NG at a ratio of 5:1 had a synergistic effect on platelet aggregation of PRP. The mechanism for the synergism of SA and NG in vivo was not clear. High performance liquid chromatography analysis of the plasma of rats received SA, NG or combination of SA and NG showed that co-administration of NG caused change in the plasma distribution profile of SA. The influence of combination on the absorption and/or metabolism of SA may be one of the reasons for the synergism of SA and NG in vivo.


Journal of Chromatography A | 2013

A dynamic multiple reaction monitoring method for the multiple components quantification of complex traditional Chinese medicine preparations: Niuhuang Shangqing pill as an example

Jian Liang; Wanying Wu; Guo-xiang Sun; Dan-dan Wang; Jinjun Hou; Wenzhi Yang; Baohong Jiang; Xuan Liu; De-An Guo

It is a challenging task to simultaneously and quantitatively analyze multiple components in DFF [Da-Fu-Fang, namely, complex traditional Chinese medicine (TCM) preparations containing more than ten TCMs] due to their numerous and extreme complex chemical compositions possessing a wide variety of chemical and physical features, and their very low content. Rather than using a conventional mass spectrometry (MS) method with multiple reaction monitoring (MRM), in the current study, this challenge was addressed by using dynamic multiple reaction monitoring (DMRM). Using a DFF, Niuhuang Shangqing pill, which is composed of 19 TCMs, as a model, a rapid (one run in 20min), sensitive [lower limit of detection (LOD) and limit of quantitation (LOQ) were achieved comparable with MRM] and accessible (a standard HPLC/MS/MS instrumentation was employed) MS method was successfully developed for the simultaneous quantification of 41 bioactive components which represented 15 of the 19 medicinal plants. A comparison of LOD and LOQ using MRM and DMRM was made to quantitatively reveal that the latter demonstrated advantages over the former. Meanwhile, a standard operating procedure concerning the development of a new DMRM method was recommended. The MS data were obtained in the positive ion mode with electrospray ionization as the ion source, acetonitrile and water as mobile phase and a Kinetex C18 core-shell column (100mm×2.10mm, 2.6μm, Phenomenex Inc.) as the analytical column. This method was then applied to 32 batches of samples. It transpired, through principal component analysis and orthogonal partial least squares discriminant analysis, that the consistency of the products was relatively good within one company, but poor among different companies among the 32 samples; one failed to qualify in terms of the Chinese Pharmacopeia. This work illustrated that the proposed DMRM method was particularly suitable for quantifying the trace components in DFF and capable of ensuring the quality of DFF.


Journal of Ethnopharmacology | 2012

Proteomic studies on protective effects of salvianolic acids, notoginsengnosides and combination of salvianolic acids and notoginsengnosides against cardiac ischemic-reperfusion injury.

Qing-Xi Yue; Fu-Bo Xie; Xiao-Yi Song; Wanying Wu; Baohong Jiang; Shu-Hong Guan; Min Yang; Xuan Liu; De-An Guo

ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza and Panax notoginseng are popularly used traditional Chinese medicine for cardiovascular disorders and they are often used in the form of combination. However, mechanisms of their cardioprotective effects were still not clear. In the present study, the protective effects of salvianolic acids (SA), notoginsengnosides (NG) and combination of SA and NG (CSN) against rat cardiac ischemia-reperfusion injury were checked and the protein expression profiles of heart tissues were examined to search their possible protein targets. MATERIALS AND METHODS The cardioprotective effects of SA, NG and CSN were checked in a rat model of ischemia-reperfusion (IR) by temporarily occluding coronary artery for 20 min followed by reperfusion. Rats were grouped into sham-operation group, IR group, IR+SA group, IR+NG group and IR+CSN group. The plasma creatine kinase (CK) activities were measured using commercial kit and the percentages of infarcted area in total ventricle tissue were calculated after nitroblue-tetrazolium (N-BT) staining of heart tissue slices. Two-dimensional protein electrophoresis (2-DE) was used to check the protein expression profiles of heart tissues. Then, proteins differentially expressed between IR group and sham-operation group were identified using matrix assisted laser desorption ionization-time of flight-mass spectrometry/mass spectrometry (MALDI-TOF MS/MS). The regulative effects of SA, NG and CSN on these IR-related proteins were analyzed. RESULTS Treatments including SA, NG and CSN all showed cardioprotective effects against ischemia-reperfusion injury and CSN exhibited to be the best. Eighteen proteins involved in IR injury were found. These proteins are involved in pathways including energy metabolism, lipid metabolism, muscle contraction, heat shock stress, cell survival and proliferation. The regulation of these proteins by SA, NG or CSN suggested possible protein targets in their cardioprotective effects. CONCLUSIONS SA and NG showed both similarity and difference in their protein targets involved in cardioprotective effects. The capability of CSN to regulate both protein targets of SA and NG might be the basis of CSN to show cardioprotective effects better than that of SA or NG.


PLOS ONE | 2013

Salvianolic Acid A, a Novel Matrix Metalloproteinase-9 Inhibitor, Prevents Cardiac Remodeling in Spontaneously Hypertensive Rats

Baohong Jiang; Defang Li; Yanping Deng; Fukang Teng; Jing Chen; Song Xue; Xiangqian Kong; Cheng Luo; Xu Shen; Hualiang Jiang; Feng Xu; Wengang Yang; Jun Yin; Yanhui Wang; Hui Chen; Wanying Wu; Xuan Liu; De-An Guo

Cardiac fibrosis is a deleterious consequence of hypertension which may further advance to heart failure and increased matrix metalloproteinase-9 (MMP-9) contributes to the underlying mechanism. Therefore, new therapeutic strategies to attenuate the effects of MMP-9 are urgently needed. In the present study, we characterize salvianolic acid A (SalA) as a novel MMP-9 inhibitor at molecular, cellular and animal level. We expressed a truncated form of MMP-9 which contains only the catalytic domain (MMP-9 CD), and used this active protein for enzymatic kinetic analysis and Biacore detection. Data generated from these assays indicated that SalA functioned as the strongest competitive inhibitor of MMP-9 among 7 phenolic acids from Salvia miltiorrhiza. In neonatal cardiac fibroblast, SalA inhibited fibroblast migration, blocked myofibroblast transformation, inhibited secretion of intercellular adhesion molecule (ICAM), interleukin-6 (IL-6) and soluble vascular cell adhesion molecule-1 (sVCAM-1) as well as collagen induced by MMP-9 CD. Functional effects of SalA inhibition on MMP-9 was further confirmed in cultured cardiac H9c2 cell overexpressing MMP-9 in vitro and in heart of spontaneously hypertensive rats (SHR) in vivo. Moreover, SalA treatment in SHR resulted in decreased heart fibrosis and attenuated heart hypertrophy. These results indicated that SalA is a novel inhibitor of MMP-9, thus playing an inhibitory role in hypertensive fibrosis. Further studies to develop SalA and its analogues for their potential clinical application of cardioprotection are warranted.

Collaboration


Dive into the Wanying Wu's collaboration.

Top Co-Authors

Avatar

De-An Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Min Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuan Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Baohong Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinjun Hou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenzhi Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuai Yao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shu-Hong Guan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Changliang Yao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huiqin Pan

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge