Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenzhi Yang is active.

Publication


Featured researches published by Wenzhi Yang.


Phytochemistry | 2014

Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity.

Wenzhi Yang; Ying Hu; Wanying Wu; Min Ye; De-An Guo

The Panax genus is a crucial source of natural medicines that has benefited human health for a long time. Three valuable medicinal herbs, namely Panax ginseng, Panax quinquefolius, and Panax notoginseng, have received considerable interest due to their extensive application in clinical therapy, healthcare products, and as foods and food additives world-wide. Panax species are known to contain abundant levels of saponins, also dubbed ginsenosides, which refer to a series of dammarane or oleanane type triterpenoid glycosides. These saponins exhibit modulatory effects to the central nervous system and beneficial effects to patients suffering from cardiovascular diseases, and also have anti-diabetic and anti-tumor properties. To the end of 2012, at least 289 saponins were reported from eleven different Panax species. This comprehensive review describes the advances in the phytochemistry of the genus Panax for the period 1963-2012, based on the 134 cited references. The reported saponins can be classified into protopanaxadiol, protopanaxatriol, octillol, oleanolic acid, C17 side-chain varied, and miscellaneous subtypes, according to structural differences in sapogenins. The investigational history of Panax is also reviewed, with special attention being paid to the structural features of the six different subtypes, together with their (1)H and (13)C NMR spectroscopic characteristics which are useful for determining their structures and absolute configuration.


Journal of Chromatography A | 2013

A dynamic multiple reaction monitoring method for the multiple components quantification of complex traditional Chinese medicine preparations: Niuhuang Shangqing pill as an example

Jian Liang; Wanying Wu; Guo-xiang Sun; Dan-dan Wang; Jinjun Hou; Wenzhi Yang; Baohong Jiang; Xuan Liu; De-An Guo

It is a challenging task to simultaneously and quantitatively analyze multiple components in DFF [Da-Fu-Fang, namely, complex traditional Chinese medicine (TCM) preparations containing more than ten TCMs] due to their numerous and extreme complex chemical compositions possessing a wide variety of chemical and physical features, and their very low content. Rather than using a conventional mass spectrometry (MS) method with multiple reaction monitoring (MRM), in the current study, this challenge was addressed by using dynamic multiple reaction monitoring (DMRM). Using a DFF, Niuhuang Shangqing pill, which is composed of 19 TCMs, as a model, a rapid (one run in 20min), sensitive [lower limit of detection (LOD) and limit of quantitation (LOQ) were achieved comparable with MRM] and accessible (a standard HPLC/MS/MS instrumentation was employed) MS method was successfully developed for the simultaneous quantification of 41 bioactive components which represented 15 of the 19 medicinal plants. A comparison of LOD and LOQ using MRM and DMRM was made to quantitatively reveal that the latter demonstrated advantages over the former. Meanwhile, a standard operating procedure concerning the development of a new DMRM method was recommended. The MS data were obtained in the positive ion mode with electrospray ionization as the ion source, acetonitrile and water as mobile phase and a Kinetex C18 core-shell column (100mm×2.10mm, 2.6μm, Phenomenex Inc.) as the analytical column. This method was then applied to 32 batches of samples. It transpired, through principal component analysis and orthogonal partial least squares discriminant analysis, that the consistency of the products was relatively good within one company, but poor among different companies among the 32 samples; one failed to qualify in terms of the Chinese Pharmacopeia. This work illustrated that the proposed DMRM method was particularly suitable for quantifying the trace components in DFF and capable of ensuring the quality of DFF.


Analytica Chimica Acta | 2015

A green protocol for efficient discovery of novel natural compounds: characterization of new ginsenosides from the stems and leaves of Panax ginseng as a case study.

Shi Qiu; Wenzhi Yang; Xiaojian Shi; Changliang Yao; Min Yang; Xuan Liu; Baohong Jiang; Wanying Wu; De-An Guo

Exploration of new natural compounds is of vital significance for drug discovery and development. The conventional approaches by systematic phytochemical isolation are low-efficiency and consume masses of organic solvent. This study presents an integrated strategy that combines offline comprehensive two-dimensional liquid chromatography, hybrid linear ion-trap/Orbitrap mass spectrometry, and NMR analysis (2D LC/LTQ-Orbitrap-MS/NMR), aimed to establish a green protocol for the efficient discovery of new natural molecules. A comprehensive chemical analysis of the total ginsenosides of stems and leaves of Panax ginseng (SLP), a cardiovascular disease medicine, was performed following this strategy. An offline 2D LC system was constructed with an orthogonality of 0.79 and a practical peak capacity of 11,000. The much greener UHPLC separation and LTQ-Orbitrap-MS detection by data-dependent high-energy C-trap dissociation (HCD)/dynamic exclusion were employed for separation and characterization of ginsenosides from thirteen fractionated SLP samples. Consequently, a total of 646 ginsenosides were characterized, and 427 have not been isolated from the genus of Panax L. The ginsenosides identified from SLP exhibited distinct sapogenin diversity and molecular isomerism. NMR analysis was finally employed to verify and offer complementary structural information to MS-oriented characterization. The established 2D LC/LTQ-Orbitrap-MS/NMR approach outperforms the conventional approaches in respect of significantly improved efficiency, much less use of drug materials and organic solvent. The integrated strategy enables a deep investigation on the therapeutic basis of an herbal medicine, and facilitates new compounds discovery in an efficient and environmentally friendly manner as well.


Journal of Pharmaceutical and Biomedical Analysis | 2014

HPLC/qTOF-MS-oriented characteristic components data set and chemometric analysis for the holistic quality control of complex TCM preparations: Niuhuang Shangqing pill as an example

Dan-dan Wang; Jian Liang; Wenzhi Yang; Jinjun Hou; Min Yang; Juan Da; Ying Wang; Baohong Jiang; Xuan Liu; Wanying Wu; De-An Guo

The quality control of Da-Fu-Fang (DFF), referring to the traditional Chinese medicine (TCM) preparations comprising more than 10 TCMs, is challenging due to their extreme chemical complexity. In this study, a strategy is proposed for the holistic quality control of DFFs based on HPLC/qTOF-MS-oriented characteristic components data set (CCDS) and chemometric analysis. Niuhuang Shangqing pill (NHSQP), composed of 19 TCMs, is used to illustrate this strategy. The fingerprint profiling of NHSQP by HPLC/qTOF-MS resulted in the characterization of 190 compounds, comprising 47 unambiguously identified by reference standard comparison. A CCDS containing 60 characteristic components was constructed by analyzing the MS spectral differentiation of the crude drugs, a laboratory-made NHSQP powder, and negative control preparations. With the established CCDS, it was possible to simultaneously monitor 16 out of the 19 drugs involved in NHSQP. Subsequently, 26 NHSQP samples from different vendors were evaluated by the qualitative and semi-quantitative analyses of their LC/MS fingerprint data. The 60 characteristic components were detected in all of the NHSQP samples, which demonstrated their authenticity. When compared with the standard sample No. 3, however, 15 of the NHSQP samples exhibited inferior quality. Samples No. 21 and No. 13 differed significantly based on a PCA score plot, and the components responsible for the differentiation were confirmed to originate from different TCMs. This strategy is a powerful and easy method to implement and provides a potential approach to establishing the holistic quality control of complex TCM preparations.


Analytical and Bioanalytical Chemistry | 2015

An integrated strategy for the systematic characterization and discovery of new indole alkaloids from Uncaria rhynchophylla by UHPLC/DAD/LTQ-Orbitrap-MS

Huiqin Pan; Wenzhi Yang; Yibei Zhang; Min Yang; Ruihong Feng; Wanying Wu; De-An Guo

AbstractThe exploration of new chemical entities from herbal medicines may provide candidates for the in silico screening of drug leads. However, this significant work is hindered by the presence of multiple classes of plant metabolites and many re-discovered structures. This study presents an integrated strategy that uses ultrahigh-performance liquid chromatography/linear ion-trap quadrupole/Orbitrap mass spectrometry (UHPLC/LTQ-Orbitrap-MS) coupled with in-house library data for the systematic characterization and discovery of new potentially bioactive molecules. Exploration of the indole alkaloids from Uncaria rhynchophylla (UR) is presented as a model study. Initially, the primary characterization of alkaloids was achieved using mass defect filtering and neutral loss filtering. Subsequently, phytochemical isolation obtained 14 alkaloid compounds as reference standards, including a new one identified as 16,17-dihydro-O-demethylhirsuteine by NMR analyses. The direct-infusion fragmentation behaviors of these isolated alkaloids were studied to provide diagnostic structural information facilitating the rapid differentiation and characterization of four different alkaloid subtypes. Ultimately, after combining the experimental results with a survey of an in-house library containing 129 alkaloids isolated from the Uncaria genus, a total of 92 alkaloids (60 free alkaloids and 32 alkaloid O-glycosides) were identified or tentatively characterized, 56 of which are potential new alkaloids for the Uncaria genus. Hydroxylation on ring A, broad variations in the C-15 side chain, new N-oxides, and numerous O-glycosides, represent the novel features of the newly discovered indole alkaloid structures. These results greatly expand our knowledge of UR chemistry and are useful for the computational screening of potentially bioactive molecules from indole alkaloids. Graphical AbstractA four-step integrated strategy for the systematic characterization and efficient discovery of new indole alkaloids from Uncaria rhynchophylla


Chinese Journal of Natural Medicines | 2014

TCM-based new drug discovery and development in China.

Wan-Ying Wu; Jinjun Hou; Hua-Li Long; Wenzhi Yang; Jian Liang; De-An Guo

Over the past 30 years, China has significantly improved the drug development environment by establishing a series of policies for the regulation of new drug approval. The regulatory system for new drug evaluation and registration in China was gradually developed in accordance with international standards. The approval and registration of TCM in China became as strict as those of chemical drugs and biological products. In this review, TCM-based new drug discovery and development are introduced according to the TCM classification of nine categories.


Acta Pharmaceutica Sinica B | 2017

Approaches to establish Q-markers for the quality standards of traditional Chinese medicines

Wenzhi Yang; Yibei Zhang; Wanying Wu; Luqi Huang; De-An Guo; Changxiao Liu

Traditional Chinese medicine (TCM) has played a pivotal role in maintaining the health of Chinese people and is now gaining increasing acceptance around the global scope. However, TCM is confronting more and more concerns with respect to its quality. The intrinsic “multicomponent and multitarget” feature of TCM necessitates the establishment of a unique quality and bioactivity evaluation system, which is different from that of the Western medicine. However, TCM is investigated essentially as “herbal medicine” or “natural product”, and the pharmacopoeia quality monographs are actually chemical-markers-based, which can ensure the consistency only in the assigned chemical markers, but, to some extent, have deviated from the basic TCM theory. A concept of “quality marker” (Q-marker), following the “property-effect-component” theory, is proposed. The establishment of Q-marker integrates multidisciplinary technologies like natural products chemistry, analytical chemistry, bionics, chemometrics, pharmacology, systems biology, and pharmacodynamics, etc. Q-marker-based fingerprint and multicomponent determination conduce to the construction of more scientific quality control system of TCM. This review delineates the background, definition, and properties of Q-marker, and the associated technologies applied for its establishment. Strategies and approaches for establishing Q-marker-based TCM quality control system are presented and highlighted with a few TCM examples.


Journal of Pharmaceutical and Biomedical Analysis | 2016

Method development and application of offline two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry-fast data directed analysis for comprehensive characterization of the saponins from Xueshuantong Injection.

Wenzhi Yang; Jingxian Zhang; Changliang Yao; Shi Qiu; Ming Chen; Huiqin Pan; Xiaojian Shi; Wanying Wu; De-An Guo

Xueshuantong Injection (XSTI), derived from Notoginseng total saponins, is a popular traditional Chinese medicine injection for the treatment of thrombus-resultant diseases. Current knowledge on its therapeutic basis is limited to five major saponins, whereas those minor ones are rarely investigated. We herein develop an offline two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry-fast data directed analysis (offline 2D LC/QTOF-Fast DDA) approach to systematically characterize the saponins contained in XSTI. Key parameters affecting chromatographic separation in 2D LC (including stationary phase, mobile phase, column temperature, and gradient elution program) and the detection by QTOF MS (involving spray voltage, cone voltage, and ramp collision energy) were optimized in sequence. The configured offline 2D LC system showed an orthogonality of 0.84 and a theoretical peak capacity of 8976. Total saponins in XSTI were fractionated into eleven samples by the first-dimensional hydrophilic interaction chromatography, which were further analyzed by reversed-phase UHPLC/QTOF-Fast DDA in negative ion mode. The fragmentation features evidenced from 36 saponin reference standards, high-accuracy MS and Fast-DDA-MS(2) data, elemental composition (C<80, H<120, O<50), double-bond equivalent (DBE 5-15), and searching an in-house library of Panax notoginseng, were simultaneously utilized for structural elucidation. Ultimately, 148 saponins were separated and characterized, and 80 have not been isolated from P. notoginseng. An in-depth depiction of the chemical composition of XSTI was achieved. The results obtained would benefit better understanding of the therapeutic basis and significant promotion on the quality standard of XSTI as well as other homologous products.


Journal of Pharmaceutical and Biomedical Analysis | 2017

Supercritical fluid chromatography for separation and preparation of tautomeric 7-epimeric spiro oxindole alkaloids from Uncaria macrophylla.

Wenzhi Yang; Yibei Zhang; Huiqin Pan; Changliang Yao; Jinjun Hou; Shuai Yao; Lu-Ying Cai; Ruihong Feng; Wanying Wu; De-An Guo

HIGHLIGHTSSFC was used to separate and isolate two pairs of 7‐epimers of SOAs.Acetonitrile stabilized two pairs of epimers and was used as modifier in SFC.Two achiral UPC2 methods were established on the Torus 1‐AA and Diol columns.Preparative SFC enabled isolation of four SOA compounds with the purity >95%.SFC provides a solution to preparation of high‐purity reference standards. ABSTRACT Increasing challenge arising from configurational interconversion in aqueous solvent renders it rather difficult to isolate high‐purity tautomeric reference standards and thus largely hinders the holistic quality control of traditional Chinese medicine (TCM). Spiro oxindole alkaloids (SOAs), as the markers for the medicinal Uncaria herbs, can easily isomerize in polar or aqueous solvent via a retro‐Mannich reaction. In the present study, supercritical fluid chromatography (SFC) is utilized to separate and isolate two pairs of 7‐epimeric SOAs, including rhynchophylline (R) and isorhynchophylline (IR), corynoxine (C) and corynoxine B (CB), from Uncaria macrophylla. Initially, the solvent that can stabilize SOA epimers was systematically screened, and acetonitrile was used to dissolve and as the modifier in SFC. Then, key parameters of ultra‐high performance SFC (ultra‐performance convergence chromatography, UPC2), comprising stationary phase, additive in modifier, column temperature, ABPR pressure, and flow rate, were optimized in sequence. Two isocratic UPC2 methods were developed on the achiral Torus 1‐AA and Torus Diol columns, suitable for UV and MS detection, respectively. MCI gel column chromatography fractionated the U. macrophylla extract into two mixtures (R/IR and C/CB). Preparative SFC, using a Viridis Prep Silica 2‐EP OBD column and acetonitrile‐0.2% diethylamine in CO2 as the mobile phase, was finally employed for compound purification. As a result, the purity of four SOA compounds was all higher than 95%. Different from reversed‐phase HPLC, SFC, by use of water‐free mobile phase (inert CO2 and aprotic modifier), provides a solution to rapid analysis and isolation of tautomeric reference standards for quality control of TCM.


RSC Advances | 2016

Selective and comprehensive characterization of the quinochalcone C-glycoside homologs in Carthamus tinctorius L. by offline comprehensive two-dimensional liquid chromatography/LTQ-Orbitrap MS coupled with versatile data mining strategies

Wenzhi Yang; Wei Si; Jingxian Zhang; Min Yang; Huiqin Pan; Jia Wu; Shi Qiu; Changliang Yao; Jinjun Hou; Wanying Wu; De-An Guo

Quinochalcone C-glycosides (QCGs) are a series of pharmacologically bioactive components chemotaxonomic for Carthamus tinctorius L. The low abundance and ubiquitous interference from flavonoid O-glycosides (FOGs) frequently hinder the systematic exposure and characterization of these QCG homologs. We herein present an offline comprehensive two-dimensional liquid chromatography/linear ion-trap quadrupole/Orbitrap mass spectrometry (2D LC/LTQ-Orbitrap MS) approach coupled with versatile data mining strategies, to systematically characterize the QCGs from C. tinctorius. Initially, an offline 2D LC system, with an orthogonality of 71% and a theoretical peak capacity of 7654, was established by combining an Acchrom XAmide column and a BEH Shield RP-18 column. Subsequently, the water extract of C. tinctorius was separated by first dimensional hydrophilic interaction liquid chromatography (HILIC) yielding twelve fractions, which were further analyzed by reversed-phase ultra-high performance liquid chromatography/LTQ-Orbitrap MS using high energy C-trap dissociation (HCD) and collision-induced dissociation (CID) in the negative ion mode. The characteristic product ion filtering of m/z 119.05 (C8H7O−) in the HCD spectra, ring double bond equivalent (RDB 10–30), characteristic UV absorption around 405 nm, preferred 0,2X0 cleavage for C-glycosides, and diagnostic product ions analysis, were simultaneously employed for the structural elucidation of QCGs. Ultimately, 163 QCQ homologs were putatively characterized, and 149 are potential new ones. Particularly, nine dimers of QCG-FOG have not been previously reported. The obtained results have greatly expanded the knowledge on the structural diversity of QCGs, demonstrating the potency of the offline comprehensive 2D LC/LTQ-Orbitrap MS approach in separation and characterization of minor herbal components.

Collaboration


Dive into the Wenzhi Yang's collaboration.

Top Co-Authors

Avatar

De-An Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wanying Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Changliang Yao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinjun Hou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Min Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huiqin Pan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jingxian Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuai Yao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shi Qiu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaojian Shi

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge