Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ward De Ceuninck is active.

Publication


Featured researches published by Ward De Ceuninck.


ACS Nano | 2012

Heat-Transfer Resistance at Solid–Liquid Interfaces: A Tool for the Detection of Single-Nucleotide Polymorphisms in DNA

Bart van Grinsven; Natalie Vanden Bon; Hannelore Strauven; Lars Grieten; Mohammed Sharif Murib; Kathia L. Jiménez Monroy; Stoffel D. Janssens; Ken Haenen; Michael J. Schöning; Veronique Vermeeren; Marcel Ameloot; Luc Michiels; Ronald Thoelen; Ward De Ceuninck; Patrick Wagner

In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA.


ACS Applied Materials & Interfaces | 2013

Selective Identification of Macrophages and Cancer Cells Based on Thermal Transport through Surface-Imprinted Polymer Layers

Kasper Eersels; Bart van Grinsven; Anitha Ethirajan; Silke Timmermans; Kathia L. Jiménez Monroy; Jeroen F. J. Bogie; Sathya Punniyakoti; Thijs Vandenryt; Jerome J. A. Hendriks; Thomas J. Cleij; Mat J. A. P Daemen; Veerle Somers; Ward De Ceuninck; Patrick Wagner

In this article, we describe a novel straightforward method for the specific identification of viable cells (macrophages and cancer cell lines MCF-7 and Jurkat) in a buffer solution. The detection of the various cell types is based on changes of the heat transfer resistance at the solid-liquid interface of a thermal sensor device induced by binding of the cells to a surface-imprinted polymer layer covering an aluminum chip. We observed that the binding of cells to the polymer layer results in a measurable increase of heat transfer resistance, meaning that the cells act as a thermally insulating layer. The detection limit was found to be on the order of 10(4) cells/mL, and mutual cross-selectivity effects between the cells and different types of imprints were carefully characterized. Finally, a rinsing method was applied, allowing for the specific detection of cancer cells with their respective imprints while the cross-selectivity toward peripheral blood mononuclear cells was negligible. The concept of the sensor platform is fast and low-cost while allowing also for repetitive measurements.


Optical Materials | 1998

Effect of oxygen on the electrical characteristics of PPV-LEDs

Jean Manca; Wim Bijnens; Raf Kiebooms; Jan D'Haen; Marc D'olieslaeger; Ting-Di Wu; Ward De Ceuninck; Luc De Schepper; Dirk Vanderzande; Jan Gelan; L.M. Stals

The presence of oxygen in the surrounding atmosphere exerts an important influence on the electro-optical characteristics and the degradation behaviour of organic electroluminescent Al-PPV-ITO-diodes. Experiments in various gas atmospheres show that the devices possess gas sensing properties. For particular gas compositions the current-voltage (IV)-characteristics feature negative resistance sections in the form of anomalous bumps superimposed on Shockley-like diode characteristics. A new interpretation is provided for the memory switch phenomena related to these anomalous electrical characteristics. The gas sensor like behaviour and the increase in conductivity in an oxygen free ambient is believed to be related to the formation of localized Ohmic paths. The growth of these Ohmic paths is inhibited by oxidation and the paths can melt due to excessive joule heating.


ACS Applied Materials & Interfaces | 2015

Label-free Protein Detection Based on the Heat-Transfer Method-A Case Study with the Peanut Allergen Ara h 1 and Aptamer-Based Synthetic Receptors

Marloes Peeters; Bart van Grinsven; Thomas J. Cleij; Kathia Lorena Jiménez-Monroy; Peter Cornelis; Elena Pérez-Ruiz; Gideon Wackers; Ronald Thoelen; Ward De Ceuninck; Jeroen Lammertyn; Patrick Wagner

Aptamers are an emerging class of molecules that, because of the development of the systematic evolution of ligands by exponential enrichment (SELEX) process, can recognize virtually every target ranging from ions, to proteins, and even whole cells. Although there are many techniques capable of detecting template molecules with aptamer-based systems with high specificity and selectivity, they lack the possibility of integrating them into a compact and portable biosensor setup. Therefore, we will present the heat-transfer method (HTM) as an interesting alternative because this offers detection in a fast and low-cost manner and has the possibility of performing experiments with a fully integrated device. This concept has been demonstrated for a variety of applications including DNA mutation analysis and screening of cancer cells. To the best our knowledge, this is the first report on HTM-based detection of proteins, in this case specifically with aptamer-type receptors. For proof-of-principle purposes, measurements will be performed with the peanut allergen Ara h 1 and results indicate detection limits in the lower nanomolar regime in buffer liquid. As a first proof-of-application, spiked Ara h 1 solutions will be studied in a food matrix of dissolved peanut butter. Reference experiments with the quartz-crystal microbalance will allow for an estimate of the areal density of aptamer molecules on the sensor-chip surface.


Synthetic Metals | 1996

Imaging of the ageing on organic electroluminescent diodes, under different atmospheres by impedance spectroscopy, scanning electron microscopy and SIMS depth profiling analysis

Wim Bijnens; Jean Manca; Ting-Di Wu; Marc D'Olicslacger; Dirk Vanderzande; Jan Gelan; Ward De Ceuninck; Luc De Schepper; L.M. Stals

Abstract We have fabricated single-layer electroluminescent diodes with poly(p-phenylene vinylene) (PPV), using indium—tin oxide (ITO) as hole-injecting anodes and aluminium as electron-injecting cathodes. We continuously monitored the impedance of the diodes, both in inert atmosphere (Ar, vacuum, N2) and under air. The impedance results reveal a binary role of oxygen. Firstly, the equivalent resistance of the device in air is one order of magnitude larger with respect to that of a device in an inert atmosphere. Secondly, measurements in air under constant d.c.-bias stress reveal a rapid ageing of the device. In an inert atmosphere no change in performance is seen in the same period of time. Optical and scanning electron microscopy (SEM) inspections of devices stressed in air reveal the presence of damage in the electrode region. Device failure is observed in the form of inhomogeneously distributed tight packing of bubbles with blisters randomly dispersed over the electrode surface. For devices run until complete failure, tiny dark spots can be observed, due to local melting. Depth profiling of the structures by secondary ion mass spectrometry (SIMS) confirms the inhomogeneous ageing. Depth profiling shows not only an important change in the electrode structures but also reveals complete oxidation of the polymer layer in the aged parts of the device.


Langmuir | 2015

Heat-Transfer-Method-Based Cell Culture Quality Assay through Cell Detection by Surface Imprinted Polymers

Kasper Eersels; Bart van Grinsven; Mehran Khorshid; Veerle Somers; Christiane Püttmann; Christoph Stein; Stefan Barth; Hanne Diliën; Gerard M. J. Bos; Wilfred T. V. Germeraad; Thomas J. Cleij; Ronald Thoelen; Ward De Ceuninck; Patrick Wagner

Previous work has indicated that surface imprinted polymers (SIPs) allow for highly specific cell detection through macromolecular cell imprints. The combination of SIPs with a heat-transfer-based read-out technique has led to the development of a selective, label-free, low-cost, and user-friendly cell detection assay. In this study, the breast cancer cell line ZR-75-1 is used to assess the potential of the platform for monitoring the quality of a cell culture in time. For this purpose, we show that the proposed methodology is able to discriminate between the original cell line (adherent growth, ZR-75-1a) and a descendant cell line (suspension growth, ZR-75-1s). Moreover, ZR-75-1a cells were cultured for a prolonged period of time and analyzed using the heat-transfer method (HTM) at regular time intervals. The results of these experiments demonstrate that the thermal resistance (Rth) signal decays after a certain number of cell culture passages. This can likely be attributed to a compromised quality of the cell culture due to cross-contamination with the ZR-75-1s cell line, a finding that was confirmed by classical STR DNA profiling. The cells do not express the same functional groups on their membrane, resulting in a weaker bond between cell and imprint, enabling cell removal by mechanical friction, provided by flushing the measuring chamber with buffer solution. These findings were further confirmed by HTM and illustrate that the biomimetic sensor platform can be used as an assay for monitoring the quality of cell cultures in time.


Sensors | 2014

Array formatting of the heat-transfer method (HTM) for the detection of small organic molecules by molecularly imprinted polymers.

Gideon Wackers; Thijs Vandenryt; Peter Cornelis; Evelien Kellens; Ronald Thoelen; Ward De Ceuninck; Patricia Losada-Pérez; Bart van Grinsven; Marloes Peeters; Patrick Wagner

In this work we present the first steps towards a molecularly imprinted polymer (MIP)-based biomimetic sensor array for the detection of small organic molecules via the heat-transfer method (HTM). HTM relies on the change in thermal resistance upon binding of the target molecule to the MIP-type receptor. A flow-through sensor cell was developed, which is segmented into four quadrants with a volume of 2.5 μL each, allowing four measurements to be done simultaneously on a single substrate. Verification measurements were conducted, in which all quadrants received a uniform treatment and all four channels exhibited a similar response. Subsequently, measurements were performed in quadrants, which were functionalized with different MIP particles. Each of these quadrants was exposed to the same buffer solution, spiked with different molecules, according to the MIP under analysis. With the flow cell design we could discriminate between similar small organic molecules and observed no significant cross-selectivity. Therefore, the MIP array sensor platform with HTM as a readout technique, has the potential to become a low-cost analysis tool for bioanalytical applications.


Langmuir | 2014

Heat-transfer resistance measurement method (HTM)-based cell detection at trace levels using a progressive enrichment approach with highly selective cell-binding surface imprints.

Karolien Bers; Kasper Eersels; Bart van Grinsven; Mat J. A. P Daemen; Jeroen F. J. Bogie; Jerome J. A. Hendriks; Evelien E. Bouwmans; Christiane Püttmann; Christoph Stein; Stefan Barth; Gerard M. J. Bos; Wilfred T. V. Germeraad; Ward De Ceuninck; Patrick Wagner

Surface-imprinted polymers allow for specific cell detection based on simultaneous recognition of the cell shape, cell size, and cell membrane functionalities by macromolecular cell imprints. In this study, the specificity of detection and the detection sensitivity for target cells within a pool of non-target cells were analyzed for a cell-specific surface-imprinted polymer combined with a heat-transfer-based read-out technique (HTM). A modified Chinese hamster ovarian cell line (CHO-ldlD) was used as a model system on which the transmembrane protein mucin-1 (MUC1) could be excessively expressed and for which the occurrence of MUC1 glycosylation could be controlled. In specific cancer cells, the overexpressed MUC1 protein typically shows an aberrant apical distribution and glycosylation. We show that surface-imprinted polymers discriminate between cell types that (1) only differ in the expression of a specific membrane protein (MUC1) or (2) only differ in the membrane protein being glycosylated or not. Moreover, surface-imprinted polymers of cells carrying different glycoforms of the same membrane protein do target both types of cells. These findings illustrate the high specificity of cell detection that can be reached by the structural imprinting of cells in polymer layers. Competitiveness between target and non-target cells was proven to negatively affect the detection sensitivity of target cells. Furthermore, we show that the detection sensitivity can be increased significantly by repetitively exposing the surface to the sample and eliminating non-specifically bound cells by flushing between consecutive cell exposures.


Sensors | 2013

Optimizing the thermal read-out technique for MIP-based biomimetic sensors: towards nanomolar detection limits.

Bram Geerets; Marloes Peeters; Bart van Grinsven; Karolien Bers; Ward De Ceuninck; Patrick Wagner

In previous work, the novel heat-transfer method (HTM) for the detection of small molecules with Molecularly Imprinted Polymers (MIP)-type receptors was presented. In this study we focus on optimization of this sensor performance, with as final aim to lower the detection limit by reducing the noise level. It was determined that the noise originates foremost from the power supply, which can be controlled by varying the PID parameters. Therefore, the effect of the individual parameters was evaluated by tuning P, I and D separately at a temperature of 37 °C, giving a first indication of the optimal configuration. Next, a temperature profile was programmed and the standard deviation of the heat-transfer resistance over the entire regime was studied for a set of parameters. The optimal configuration, P1-I6-D0, reduced the noise level with nearly a factor of three compared to the original parameters of P10-I5-D0. With the optimized settings, the detection of L-nicotine in buffer solutions was studied and the detection limit improved significantly from 100 nM to 35 nM. Summarizing, optimization of the PID parameters and thereby improving the detection limit is a key parameter for first applications of the HTM-method for MIP receptors in analytical research.


International Journal of Nanomedicine | 2014

Heat-transfer-based detection of SNPs in the PAH gene of PKU patients

Natalie Vanden Bon; Bart van Grinsven; Mohammed Sharif Murib; Weng Siang Yeap; Ken Haenen; Ward De Ceuninck; Patrick Wagner; Marcel Ameloot; Veronique Vermeeren; Luc Michiels

Conventional neonatal diagnosis of phenylketonuria is based on the presence of abnormal levels of phenylalanine in the blood. However, for carrier detection and prenatal diagnosis, direct detection of disease-correlated mutations is needed. To speed up and simplify mutation screening in genes, new technologies are developed. In this study, a heat-transfer method is evaluated as a mutation-detection technology in entire exons of the phenylalanine hydroxylase (PAH) gene. This method is based on the change in heat-transfer resistance (Rth) upon thermal denaturation of dsDNA (double-stranded DNA) on nanocrystalline diamond. First, ssDNA (single-stranded DNA) fragments that span the size range of the PAH exons were successfully immobilized on nanocrystalline diamond. Next, it was studied whether an Rth change could be observed during the thermal denaturation of these DNA fragments after hybridization to their complementary counterpart. A clear Rth shift during the denaturation of exon 5, exon 9, and exon 12 dsDNA was observed, corresponding to lengths of up to 123 bp. Finally, Rth was shown to detect prevalent single-nucleotide polymorphisms, c.473G>A (R158Q), c.932T>C (p.L311P), and c.1222C>T (R408W), correlated with phenylketonuria, displaying an effect related to the different melting temperatures of homoduplexes and heteroduplexes.

Collaboration


Dive into the Ward De Ceuninck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge