Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ward V. Houck is active.

Publication


Featured researches published by Ward V. Houck.


Circulation Research | 1999

Matrix Metalloproteinase Inhibition During the Development of Congestive Heart Failure Effects on Left Ventricular Dimensions and Function

Francis G. Spinale; Mytsi L. Coker; Stephen R. Krombach; Rupak Mukherjee; Hussein Hallak; Ward V. Houck; Mark J. Clair; Scott B. Kribbs; Linda L. Johnson; J. Thomas Peterson; Michael R. Zile

The development of congestive heart failure (CHF) is associated with left ventricle (LV) dilation and myocardial remodeling. The matrix metalloproteinases (MMPs) play a significant role in extracellular remodeling, and recent studies have demonstrated increased MMP expression and activity with CHF. Whether increased MMP activity directly contributes to the LV remodeling with CHF remains unknown. Accordingly, this study examined the effects of chronic MMP inhibition (MMPi) on LV size and function during the progression of CHF. Pigs were assigned to the following groups: (1) CHF, rapid pacing for 3 weeks at 240 bpm (n=12); (2) CHF/MMPi, rapid pacing and concomitant MMPi (PD166793, 20 mg/kg per day [n=10]), and (3) control (n=11). With pacing CHF, LV fractional shortening was reduced (19+/-1 versus 45+/-1%), and end-diastolic dimension increased (5.67+/-0.11 versus 3.55+/-0.05 cm), compared with baseline values (P<0.05). In the CHF/MMPi group, LV endocardial shortening increased (25+/-2%) and the end-diastolic dimension was reduced (4.92+/-0.17 cm) compared with CHF-only values (P<0.05). LV midwall shortening was reduced to a comparable degree in the CHF-only and CHF/MMPi groups. LV peak wall stress increased 3-fold with pacing CHF compared with controls and was significantly reduced in the CHF/MMPi group. LV myocardial stiffness was unchanged with CHF but was increased in the CHF/MMPi group. LV myocyte length was increased with pacing CHF compared with controls (180+/-3 versus 125+/-4 microm, P<0.05) and was reduced in the CHF/MMPi group (169+/-4 microm, P<0.05). Basal-state myocyte shortening velocity was reduced with pacing CHF compared with controls (33+/-2 versus 66+/-1 microm/s, P<0.05) and was unchanged in the CHF/MMPi group (31+/-2 microm/s). Using an ex vivo assay system, myocardial MMP activity was increased with pacing CHF and was reduced with chronic MMPi. In summary, concomitant MMPi with developing CHF limited LV dilation and reduced wall stress. These results suggest that increased myocardial MMP activity contributes to LV myocardial remodeling in developing CHF.


Circulation | 1999

Effects of Growth Hormone Supplementation on Left Ventricular Morphology and Myocyte Function With the Development of Congestive Heart Failure

Ward V. Houck; Lydia C. Pan; Scott B. Kribbs; Mark J. Clair; George M. McDaniel; R. Stephen Krombach; William M. Merritt; Christine Pirie; Julie P. Iannini; Rupak Mukherjee; Francis G. Spinale

BACKGROUND Release of growth hormone (GH), putatively through alterations in insulin growth factor-1 (IGF-1) levels, has been implicated to influence left ventricular (LV) myocardial structure and function. The objective of this study was to determine contributory mechanisms by which GH supplementation may influence LV function with the development of congestive heart failure (CHF). METHODS AND RESULTS Pigs were assigned to the following groups: (1) chronic pacing at 240 bpm for 3 weeks (n = 10), (2) chronic pacing and GH supplementation (200 microg x kg(-1) x d(-1), n = 10), and (3) controls (n = 8). GH treatment increased IGF-1 plasma levels by nearly 2.5-fold throughout the pacing protocol. In the untreated pacing CHF group, LV fractional shortening was reduced and peak wall stress increased. In the pacing CHF and GH groups, LV fractional shortening was higher and LV wall stress lower than untreated CHF values. Steady-state myocyte velocity of shortening was reduced with pacing CHF and was unchanged from CHF values with GH treatment. In the presence of 25 nmol/L isoproterenol, the change in myocyte shortening velocity was reduced in the untreated CHF group and increased in the GH-treated group. LV sarcoplasmic reticulum Ca(2+)-ATPase abundance was reduced with pacing CHF but was normalized with GH treatment. CONCLUSIONS Short-term GH supplementation improved LV pump function in pacing CHF as a result of favorable effects on LV remodeling and contractile processes. Thus, GH supplementation may serve as a novel therapeutic modality in developing CHF.


Cardiovascular Research | 1998

Angiotensin converting enzyme inhibition, AT1 receptor inhibition, and combination therapy with pacing induced heart failure : effects on left ventricular performance and regional blood flow patterns

R. Stephen Krombach; Mark J. Clair; Jennifer W. Hendrick; Ward V. Houck; James L. Zellner; Scott B. Kribbs; Steve Whitebread; Rupak Mukherjee; Marc de Gasparo; Francis G. Spinale

BACKGROUND AT1 receptor activation has been demonstrated to cause increased vascular resistance properties which may be of particular importance in the setting of congestive heart failure (CHF). The overall goal of this study was to examine the effects of ACE inhibition (ACEI) alone, AT1 receptor blockade alone and combined ACEI and AT1 receptor blockade on LV pump function, systemic hemodynamics and regional blood flow patterns in the normal state and with the development of pacing induced CHF, both at rest and with treadmill induced exercise. METHODS AND RESULTS Pigs (25 kg) were instrumented in order to measure cardiac output (CO), systemic (SVR) and pulmonary vascular (PVR) resistance, neurohormonal system activity, and myocardial blood flow distribution in the conscious state and assigned to one of 4 groups: (1) rapid atrial pacing (240 bpm) for 3 weeks (n = 7); (2) ACEI (benazeprilat, 3.75 mg/day) and pacing (n = 7); (3) AT1 receptor blockade (valsartan, 60 mg/day) and rapid pacing (n = 7); and (4) ACEI and AT1 receptor blockade (benazeprilat/valsartan, 1/60 mg/day, respectively) and pacing (n = 7). Measurements were obtained at rest and with treadmill exercise (15 degrees, 3 miles/h; 10 min) in the normal control state and after the completion of the treatment protocols. With rapid pacing, CO was reduced at rest and with exercise compared to controls. ACEI or AT1 blockade normalized CO at rest, but remained lower than control values with exercise. Combination therapy normalized CO both at rest and with exercise. Resting SVR in the CHF group was higher than controls and SVR fell to a similar degree with exercise; all treatment groups reduced resting SVR. With exercise, SVR was reduced from rapid pacing values in the ACEI and combination therapy groups. PVR increased by over 4-fold in the rapid pacing group both at rest and with exercise, and was reduced in all treatment groups. In the combination therapy group, PVR was similar to control values with exercise. Plasma catecholamines and endothelin levels were increased by over 3-fold with chronic rapid pacing, and were reduced in all treatment groups. In the combination therapy group, the relative increase in catecholamines and endothelin with exercise were significantly blunted when compared to rapid pacing only values. LV myocardial blood flow at rest was reduced in the rapid pacing only and monotherapy groups, but was normalized with combination therapy. CONCLUSION These findings suggest that with developing CHF, combined ACE inhibition and AT1 receptor blockade improved vascular resistive properties and regional blood flow distribution to a greater degree than that of either treatment alone. Thus, combined ACEI and AT1 receptor blockade may provide unique benefits in the setting of CHF.


Current Opinion in Pulmonary Medicine | 2005

New approaches to the minimally invasive treatment of lung cancer.

Robert J. McKenna; Ward V. Houck

Purpose of review The momentum for minimally invasive thoracic surgery has been growing. Thousands of video-assisted thoracoscopic surgery lobectomies have been performed since the first video-assisted thoracoscopic surgery lobectomy was performed in 1992, but currently most lobectomies are still performed via a thoracotomy. Although most lobectomies could be performed with video-assisted thoracoscopic surgery, less than 5% are currently performed that way. Compared with a thoracotomy, video-assisted thoracoscopic surgery offers patients a shorter length of stay, less pain, and a quicker recovery, without compromising the adequacy of the operation. The purpose of this review is to identify the current uses for minimally invasive procedures in thoracic surgery and to present the current data regarding these procedures. Recent findings Complete anatomic resections and node dissections are routinely being performed at several centers internationally. The median length of stay after video-assisted thoracoscopic surgery lobectomy is 3 days, and 84.7% of patients had no complications. Studies comparing video-assisted thoracoscopic surgery and thoracotomy suggest that minimally invasive surgery causes less pain, has a smaller impact on postoperative pulmonary function, and provides a quicker return to regular activity, with at least comparable survival for cancer patients. Summary Current data suggest that, compared with a thoracotomy, video-assisted thoracoscopic surgery has advantages for anatomic pulmonary resections.


Circulation | 1998

Chronic Amlodipine Treatment During the Development of Heart Failure

Francis G. Spinale; Rupak Mukherjee; R. Stephen Krombach; Mark J. Clair; Jennifer W. Hendrick; Ward V. Houck; Latha Hebbar; Scott B. Kribbs; James L. Zellner; Michael G. Dodd

BACKGROUND This study examined the effects of chronic amlodipine treatment on left ventricular (LV) pump function, systemic hemodynamics, neurohormonal status, and regional blood flow distribution in an animal model of congestive heart failure (CHF) both at rest and with treadmill exercise. In an additional series of in vitro studies, LV myocyte contractile function was examined. METHODS AND RESULTS Sixteen pigs were studied under normal control conditions and after the development of chronic pacing-induced CHF (240 bpm, 3 weeks, n=8) or chronic pacing and amlodipine (1.5 mg . kg-1 . d-1, n=8). Under ambient resting conditions, LV stroke volume (mL) was reduced with CHF compared with the normal control state (16+/-2 versus 31+/-2, P<0.05) and increased with concomitant amlodipine treatment (29+/-2, P<0.05). At rest, systemic and pulmonary vascular resistance (dyne . s-1 . cm-5) increased with CHF compared with the normal control state (3102+/-251 versus 2156+/-66 and 1066+/-140 versus 253+/-24, respectively, both P<0.05) and were reduced with amlodipine treatment (2108+/-199 and 480+/-74, respectively, P<0.05). With CHF, LV stroke volume remained reduced and was associated with a 40% reduction in myocardial blood flow during treadmill exercise, whereas chronic amlodipine treatment normalized LV stroke volume and improved myocardial blood flow. Resting and exercise-induced plasma norepinephrine levels were increased by >5-fold in the CHF group and were reduced by 50% from CHF values with chronic amlodipine treatment. Resting plasma endothelin (fmol/mL) increased with CHF compared with the normal state (10.4+/-0.9 versus 3.1+/-0.3, P<0.05) and was reduced with amlodipine treatment (6.6+/-1.1, P<0.5). With CHF, LV myocyte velocity of shortening ( microm/s) was reduced compared with normal controls (39+/-1 versus 64+/-1, P<0.05) and was increased with chronic amlodipine treatment (52+/-1, P<0.05). CONCLUSIONS Chronic amlodipine treatment in this model of developing CHF produced favorable hemodynamic, neurohormonal, and contractile effects in the setting of developing CHF.


American Journal of Cardiology | 1999

Amlodipine therapy in congestive heart failure: hemodynamic and neurohormonal effects at rest and after treadmill exercise

R. Stephen Krombach; Mark J. Clair; Jennifer W. Hendrick; Rupak Mukherjee; Ward V. Houck; Latha Hebbar; Scott B. Kribbs; Michael George Dodd; Francis G. Spinale

This study examined the acute effects of amlodipine treatment on left ventricular pump function, systemic hemodynamics, neurohormonal status, and regional blood flow distribution in an animal model of congestive heart failure (CHF), both at rest and with treadmill exercise. A total of 14 pigs were studied under control conditions and after the development of pacing-induced CHF (240 beats per minute, 3 weeks, n = 7) or with CHF and acute amlodipine treatment for the last 3 days of pacing (1.5 mg/kg per day, n = 7). Under resting conditions, left ventricular stroke volume (mL) was reduced with CHF compared with the normal state (15+/-2 vs. 31+/-1, p<0.05) and increased with amlodipine treatment (23+/-4, p<0.05). At rest, systemic vascular resistance increased with CHF compared with the normal state (3,078+/-295 vs. 2,131+/-120 dyne x s cm(-5), p<0.05) and was reduced after amlodipine treatment (2,472+/-355 dyne x s cm(-5), p<0.05). With exercise, left ventricular stroke volume remained lower and systemic vascular resistance higher in the CHF group, but was normalized with amlodipine treatment. With exercise, left ventricular myocardial blood flow increased from resting values, but was reduced from the normal state with CHF (normal: 1.69+/-0.12 to 7.62+/-0.74 mL/min per gram vs. CHF: 1.26+/-0.12 to 4.77+/-0.45 mL/min per gram, both p<0.05) and was normalized with acute amlodipine treatment (1.99+/-0.35 to 6.29+/-1.23 mL/min per gram). Resting plasma norepinephrine was increased by >5-fold in the CHF group at rest and was not affected by amlodipine treatment. However, with exercise, amlodipine treatment blunted the increase in plasma norepinephrine by >50% when compared with untreated CHF values. Resting plasma endothelin levels increased with CHF compared with the normal state (10.9+/-0.9 vs. 2.8+/-0.4 fmol/mL, p<0.05) and was reduced with amlodipine treatment (7.5+/-1.5 fmol/mL, p<0.5). In other vascular beds, acute amlodipine treatment with CHF improved pulmonary and renal blood flow both at rest and with exercise; however, there were no effects observed on skeletal muscle blood flow. With the development of CHF, acute amlodipine treatment does not negatively influence left ventricular pump function, but rather may provide favorable hemodynamic and neurohormonal effects.


The Annals of Thoracic Surgery | 1998

Normothermic Versus Hypothermic Hyperkalemic Cardioplegia: Effects on Myocyte Contractility

Ward V. Houck; Scott B. Kribbs; James L. Zellner; Melissa A. Doscher; Jignesh D. Joshi; Fred A. Crawford; Francis G. Spinale

BACKGROUND This study was designed to determine the effects of prolonged hyperkalemic cardioplegic arrest under normothermic or hypothermic conditions with respect to left ventricular myocyte contractile performance and beta-adrenergic responsiveness. METHODS Isolated left ventricular porcine myocytes were randomly assigned to one of three groups: (group 1) normothermic control, (group 2) hypothermic cardioplegic arrest, or (group 3) normothermic cardioplegic arrest. Myocyte contractility was evaluated by high-speed video microscopy at baseline and after beta-adrenergic stimulation with isoproterenol (25 nmol/L). RESULTS Myocyte velocity of shortening was decreased after both hypothermic and normothermic cardioplegic arrest (68 +/- 2 and 69 +/- 2 microns/s, respectively) compared with normothermic control values (96 +/- 2 microns/s; p < 0.05). This relative reduction in baseline contractile function was equivalent in both cardioplegia groups (p = 0.5356). With beta-adrenergic stimulation, myocyte velocity of shortening was 186 +/- 4 microns/s in the hypothermic and 176 +/- 3 microns/s in the normothermic cardioplegia groups (p = 0.0563). However, myocyte contractility with beta-adrenergic stimulation was reduced in both cardioplegia groups compared with normothermic controls (205 +/- 4 microns/s; p < 0.05, respectively). CONCLUSIONS Hyperkalemic cardioplegic arrest under either normothermic or hypothermic conditions resulted in an equivalent reduction in baseline myocyte contractile function with reperfusion/rewarming. Hypothermic cardioplegic arrest may have provided mild protective effects on beta-adrenergic responsiveness. Nevertheless, these results suggest that an important contributory factor for diminished myocyte contractility after simulated cardioplegic arrest was prolonged exposure to a hyperkalemic environment.


Journal of Cardiac Failure | 1997

Pulmonary hemodynamics and endothelin levels in pacing-induced heart failure: During rest and exercise☆

Scott B. Kribbs; Mark J. Clair; R. Stephen Krombach; Jennifer W. Hendrick; Patrick B. Thomas; Anthony T. Keever; Ward V. Houck; Rupak Mukherjee; Francis G. Spinale

Elevated plasma levels of endothelin (ET) have been reported to accompany the development of heart failure (HF), and therefore, this potent vasoconstrictive peptide has been postulated to contribute to the altered pulmonary hemodynamics that occur in this disease process. The overall goal of this study was to examine more carefully the relationship between ET levels in the pulmonary system and pulmonary hemodynamics in the normal and HF states, during both rest and exercise. This study used a porcine model of chronic rapid pacing that has been shown in previous studies to produce left ventricular dysfunction and neurohormonal system activation consistent with the syndrome of HF. Pigs (n = 10) were chronically instrumented to measure pulmonary and systemic hemodynamics, parenchymal flow, and ET content and to obtain blood samples from the pulmonary circuit in the conscious state. Measurements were performed in the normal control state and again following the development of pacing-induced HF (240 beats/min per 21 days), both at rest and during treadmill exercise (3 mph, 15 degrees incline, 12 minutes). With HF, under ambient resting conditions, a threefold increase in pulmonary plasma ET occurred and was accompanied by a fivefold increase in pulmonary vascular resistance. During treadmill exercise, pulmonary plasma ET and pulmonary vascular resistance remained elevated in the HF group when compared with the normal state and were associated with a sixfold decrease in pulmonary parenchymal flow. Pulmonary parenchymal ET content was increased with HF when compared with values for normal control subjects (8.5 +/- 0.6 vs 5.6 +/- 0.8 fmol ET/mg protein, P < .05). Thus, the findings of this study suggest that in this model of HF, increased ET within the pulmonary circuit contributed to abnormalities in resistive properties and parenchymal flow.


The Annals of Thoracic Surgery | 1998

Temporal Relation of ATP-Sensitive Potassium-Channel Activation and Contractility Before Cardioplegia

Latha Hebbar; Ward V. Houck; James L. Zellner; B.Hugh Dorman; Francis G. Spinale

BACKGROUND Pharmacologic treatment using potassium-channel openers (PCOs) before cardioplegic arrest has been demonstrated to provide beneficial effects on left ventricular performance with subsequent reperfusion and rewarming. However, the PCO treatment interval necessary to provide protective effects during cardioplegic arrest remains to be defined. The present study was designed to determine the optimum period of PCO treatment that would impart beneficial effects on left ventricular myocyte contractility after simulated cardioplegic arrest. METHODS Left ventricular porcine myocytes were assigned randomly to three groups: (1) normothermic control = 37 degrees C for 2 hours; (2) cardioplegia = K+ (24 mEq/L) at 4 degrees C for 2 hours followed by reperfusion and rewarming; and (3) PCO and cardioplegia = 1 to 15 minutes of treatment with the PCO aprikalim (100 micromol/L) at 37 degrees C followed by hypothermic (4 degrees C) cardioplegic arrest and subsequent rewarming. Myocyte contractility was measured after rewarming by videomicroscopy. A minimum of 50 myocytes were examined at each treatment and time point. RESULTS Myocyte velocity of shortening was reduced after cardioplegic arrest and rewarming compared with normothermic controls (63+/-3 microm/s versus 32+/-2 microm/s, respectively; p < 0.05). With 3 minutes of PCO treatment, myocyte velocity of shortening was improved after cardioplegic arrest to values similar to those of normothermic controls (56+/-3 microm/s). Potassium channel opener treatment for less than 3 minutes did not impart a protective effect, and the protective effect was not improved further with more prolonged periods of PCO treatment. CONCLUSIONS A brief interval of PCO treatment produced beneficial effects on left ventricular myocyte contractile function in a simulated model of cardioplegic arrest and rewarming. These results suggest that a brief period of PCO treatment may provide a strategy for myocardial protection during prolonged cardioplegic arrest in the setting of cardiac operation.


The Journal of Thoracic and Cardiovascular Surgery | 1998

Downstream defects in β-adrenergic signaling and relation to myocyte contractility after cardioplegic arrest

Ward V. Houck; Chadwick V. Thomas; Melissa A. Doscher; Ying Hua Wang; Latha Hebbar; Jignesh D. Joshi; Rupak Mukherjee; Fred A. Crawford; Francis G. Spinale

OBJECTIVE Transient left ventricular dysfunction can occur after hypothermic, hyperkalemic cardioplegic arrest and is associated with decreased beta-adrenergic receptor responsiveness. Occupancy of the beta-adrenergic receptor activates adenylate cyclase, which phosphorylates the L-type Ca2+ channel-enhancing myocyte contractility. The goal of this study was to identify potential mechanisms that contribute to the defects in the beta-adrenergic receptor signaling cascade after cardioplegic arrest. METHODS Isolated left ventricular porcine myocytes were assigned to one of two treatment groups: (1) cardioplegic arrest (24 mEq/L K+, 4 degrees C x 2 hours, then 5 minutes in 37 degrees C cell media; n = 130) or (2) normothermic control (cell media, 37 degrees C x 2 hours; n = 222). Myocyte contractility was assessed at baseline and after either beta-adrenergic receptor occupancy (25 nmol/L isoproterenol [INN: isoprenaline]), activation of adenylate cyclase (0.5 mumol forskolin), or direct activation of the L-type Ca(2+)-channel (10 nmol/L or 100 nmol/L (-)BayK 8644). RESULTS Myocyte velocity of shortening (micron/sec) was increased with beta-adrenergic receptor occupancy or direct adenylate cyclase stimulation compared with baseline in the normothermic group (187.3 +/- 6.9, 181.7 +/- 10.2, and 73.9 +/- 2.9, respectively; p < 0.0001) and after cardioplegic arrest (128.6 +/- 8.9, 124.3 +/- 9.4, and 46.1 +/- 2.6, respectively; p < 0.0001). However, the response after cardioplegic arrest was significantly reduced compared with normothermic values under all conditions (p = 0.012). Direct activation of the L-type Ca(2+)-channel, which eliminates beta-adrenergic receptor-dependent events, increased myocyte contractility in the normothermic group (161.90 +/- 12.0, p < 0.0001) and after cardioplegic arrest (92.78 +/- 6.8, p < 0.0001), but the positive inotropic response appeared reduced compared with normothermic control values (p = 0.003). CONCLUSION These findings suggest that contributory mechanisms for the reduced beta-adrenergic receptor-mediated response after hypothermic, hyperkalemic cardioplegic arrest lie downstream from these specific components of the transduction pathway and likely include defects in Ca2+ homeostasis, myofilament Ca2+ sensitivity, or both.

Collaboration


Dive into the Ward V. Houck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott B. Kribbs

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer W. Hendrick

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Latha Hebbar

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

R. Stephen Krombach

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

James L. Zellner

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Robert J. McKenna

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Clark Fuller

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge