Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Warren P. Norwood is active.

Publication


Featured researches published by Warren P. Norwood.


Chemosphere | 2013

Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment.

Degao Wang; Warren P. Norwood; Mehran Alaee; Jonathan D. Byer; Samantha Brimble

The fate and behavior of cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in the environment were reviewed. We evaluated their usage data and patterns, physico-chemical properties, toxicology, partitioning and degradation, methods of detection, and concentrations. The use of cVMS as an intermediate in the formation of silicone polymers, personal care and household products has resulted in their widespread environmental exposure; they have been detected in biogas, air, water, soil, biosolid, sediment, and biota samples. Modeled and experimental results suggest that cVMS may be subject to long-range atmospheric transport, but have low potential to contaminate the Arctic. For D4 and D5, there was no evidence of trophic biomagnification in aquatic food webs, while some aquatic organisms demonstrated a high degree of bioconcentration and bioaccumulation. High concentrations of cVMS observed in indoor air and biosolids resulted from point sources. Concentrations of cVMS in water, sediment, and soil were all below their no-observed-effect-concentrations.


Aquatic Toxicology | 2014

Metal-PAH mixtures in the aquatic environment: A review of co-toxic mechanisms leading to more-than-additive outcomes

Patrick T. Gauthier; Warren P. Norwood; Ellie E. Prepas; Greg G. Pyle

Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) occur ubiquitously in aquatic environments, yet relatively little is known regarding their combined toxicities. Emerging reports investigating the additive mortality in metal-PAH mixtures have indicated that more-than-additive effects are equally as common as strictly-additive effects, raising concern for ecological risk assessment typically based on the summation of individual toxicities. Moreover, the current separation of focus between in vivo and in vitro studies, and fine- and coarse-scale endpoints, creates uncertainty regarding the mechanisms of co-toxicity involved in more-than-additive effects on whole organisms. Drawing from literature on metal and PAH toxicity in bacteria, protozoa, invertebrates, fish, and mammalian models, this review outlines several key mechanistic interactions likely to promote more-than-additive toxicity in metal-PAH mixtures. Namely, the deleterious effects of PAHs on membrane integrity and permeability to metals, the potential for metal-PAH complexation, the inhibitory nature of metals to the detoxification of PAHs via the cytochrome P450 pathway, the inhibitory nature of PAHs towards the detoxification of metals via metallothionein, and the potentiated production of reactive oxygenated species (ROS) in certain metal (e.g. Cu) and PAH (e.g., phenanthrenequinone) mixtures. Moreover, the mutual inhibition of detoxification suggests the possibility of positive feedback among these mechanisms. The individual toxicities and interactive aspects of contaminant transport, detoxification, and the production of ROS are herein discussed.


Environmental Toxicology and Chemistry | 2006

Assessment of the toxicity of mixtures of copper, 9,10-phenanthrenequinone, and phenanthrene to Daphnia magna : Evidence for a reactive oxygen mechanism

Fangli Xie; Stephen A. Koziar; Mark A. Lampi; D. George Dixon; Warren P. Norwood; Uwe Borgmann; Xiao-Dong Huang; Bruce M. Greenberg

Polycyclic aromatic hydrocarbons and their derivatives are ubiquitous environmental contaminants. They are commonly present in complex mixtures with other contaminants, such as metals. The toxicities of phenanthrene (PHE) and 9,10-phenanthrenequinone (PHQ) with or without Cu were determined using Daphnia magna. Copper was the most toxic among the three chemicals tested, followed by PHQ and then PHE, with 48-h median effective concentrations (EC50s) of 0.96, 1.72, and 5.33 microM, respectively. Copper at 0.31 microM, or approximately the 5% effective concentration, decreased the EC50 of PHQ from 1.72 to 0.28 microM. Likewise, PHQ at 1.2 microM, or approximately the 10% effective concentration, significantly lowered the EC50 of Cu from 0.96 to 0.30 microM. This synergistic effect was not observed, however, in mixtures of Cu and PHE based on the response addition model. Assimilation of Cu wasfound to be similar with or without PHQ at increasing external concentrations of Cu, indicating that the increased toxicity of their mixtures is physiologically based. The ability of Cu plus PHQ to generate reactive oxygen species (ROS) was measured as well. Copper alone caused elevated ROS levels at a low concentration (0.63 microM). With PHQ present, however, this elevation in ROS occurred at an even lower Cu level (0.31 microM). Possible attenuation effects of ascorbic acid (vitamin C) on toxicity and ROS production induced by Cu, PHQ, and their mixtures were then examined. Ascorbic acid protected against Cu and Cu-plus-PHQ mixture-mediated toxicity but did not affect PHQ toxicity. Ascorbic acid also lowered ROS levels in the presence of Cu and Cu plus PHQ. We conclude that there exist potential toxic interactions between metals and modified PAHs and that these interactions can involve ROS formation.


Chemosphere | 2013

Determination of cyclic volatile methylsiloxanes in water, sediment, soil, biota, and biosolid using large-volume injection–gas chromatography–mass spectrometry

Degao Wang; Mehran Alaee; Helena Steer; Tara Tait; Zackery Williams; Samantha Brimble; Lewina Svoboda; Enzo Barresi; Maryl DeJong; JoAnne Schachtschneider; Ed Kaminski; Warren P. Norwood; Ed Sverko

Several methods were developed to detect the cyclic volatile methylsiloxanes (cVMSs) including octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in water, sediment, soil, biota, and biosolid samples. Analytical techniques employed to optimize measurement of this compound class in various matrices included membrane-assisted solvent extraction in water, liquid-solid extraction for sediment, soil, biota, and biosolid samples. A subsequent analysis of the extract was conducted by large-volume injection-gas chromatography-mass spectrometry (LVI-GC-MS). These methods employed no evaporative techniques to avoid potential losses and contamination of the volatile siloxanes. To compensate for the inability to improve detection limits by concentrating final sample extract volumes we used a LVI-GC-MS. Contamination during analysis was minimized by using a septumless GC configuration to avoid cVMSs associated with septum bleed. These methods performed well achieving good linearity, low limits of detection, good precision, recovery, and a wide dynamic range. In addition, stability of cVMS in water and sediment was assessed under various storage conditions. D4 and D5 in Type-I (Milli-Q) water stored at 4°C were stable within 29d; however, significant depletion of D6 (60-70%) occurred only after 3d. Whereas cVMS in sewage influent and effluent were stable at 4°C within 21d. cVMS in sediment sealed in amber glass jars at -20°C and in pentane extracts in vials at -15°C were stable during 1month under both storage conditions.


Journal of Great Lakes Research | 1993

Spatial and Temporal Variability in Toxicity of Hamilton Harbour Sediments: Evaluation of the Hyalella azteca 4-week Chronic Toxicity Test☆

Uwe Borgmann; Warren P. Norwood

Abstract A recently proposed static chronic toxicity test for sediments using 0–1 week old Hyalella azteca was applied to sediments collected on seven different dates and at five sites over a 3-year period in Hamilton Harbour, Ontario. Survival varied dramatically, from 0 to over 80%, at several sites, indicating that sediment samples must be collected on a number of different dates at each site if an accurate assessment of potential toxic effects to biota is to be made. Repeatability of the test was good. Furthermore, the variation in survival in sediments collected over a series of closely spaced sites in the vicinity of the two most toxic sites was much less than the variability observed between sampling dates. This suggests that the high temporal variability in sediment toxicity is real, and is not an artifact of the test procedure or high spatial variability in the sediments around the sampling sites. Although highly variable, the data suggest that the toxicity of Hamilton Harbour sediments has been decreasing over the study period. Toxicity could not be correlated with the concentrations of metals, chlorinated organic compounds, or PAHs.


Environmental Toxicology and Chemistry | 2013

An effects addition model based on bioaccumulation of metals from exposure to mixtures of metals can predict chronic mortality in the aquatic invertebrate hyalella azteca

Warren P. Norwood; Uwe Borgmann; D. George Dixon

Chronic toxicity tests of mixtures of 9 metals and 1 metalloid (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, and Zn) at equitoxic concentrations over an increasing concentration range were conducted with the epibenthic, freshwater amphipod Hyalella azteca. The authors conducted 28-d, water-only tests. The bioaccumulation trends changed for 8 of the elements in exposures to mixtures of the metals compared with individual metal exposures. The bioaccumulation of Co and Tl were affected the most. These changes may be due to interactions between all the metals as well as interactions with waterborne ligands. A metal effects addition model (MEAM) is proposed as a more accurate method to assess the impact of mixtures of metals and to predict chronic mortality. The MEAM uses background-corrected body concentration to predict toxicity. This is important because the chemical characteristics of different waters can greatly alter the bioavailability and bioaccumulation of metals, and interactions among metals for binding at the site of action within the organism can affect body concentration. The MEAM accurately predicted toxicity in exposures to mixtures of metals, and predicted results were within a factor of 1.1 of the observed data, using 24-h depurated body concentrations. The traditional concentration addition model overestimated toxicity by a factor of 2.7.


Environmental Science & Technology | 2015

Metal-Polycyclic Aromatic Hydrocarbon Mixture Toxicity in Hyalella azteca. 2. Metal Accumulation and Oxidative Stress as Interactive Co-toxic Mechanisms.

Patrick T. Gauthier; Warren P. Norwood; Ellie E. Prepas; Greg G. Pyle

Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) are commonly found in aquatic environments. Emerging reports have identified that more-than-additive mortality is common in metal-PAH mixtures. Individual aspects of PAH toxicity suggest they may alter the accumulation of metals and enhance metal-derived reactive oxygen species (ROS). Redox-active metals (e.g., Cu and Ni) are also capable of enhancing the redox cycling of PAHs. Accordingly, we explored the mutual effects redox-active metals and PAHs have on oxidative stress, and the potential for PAHs to alter the accumulation and/or homeostasis of metals in juvenile Hyalella azteca. Amphipods were exposed to binary mixtures of Cu, Cd, Ni, or V, with either phenanthrene (PHE) or phenanthrenequinone (PHQ). Mixture of Cu with either PAH produced striking more-than-additive mortality, whereas all other mixtures amounted to strictly additive mortality following 18-h exposures. We found no evidence to suggest that interactive effects on ROS production were involved in the more-than-additive mortality of Cu-PHE and Cu-PHQ mixtures. However, PHQ increased the tissue concentration of Cu in juvenile H. azteca, providing a potential mechanism for the observed more-than-additive mortality.


Chemosphere | 2013

Decamethylcyclopentasiloxane (D5) spiked sediment: Bioaccumulation and toxicity to the benthic invertebrate Hyalella azteca

Warren P. Norwood; Mehran Alaee; Ed Sverko; Degao Wang; M. Brown; M. Galicia

Chronic toxicity and bioaccumulation of decamethylcyclopentasiloxane (D5) to Hyalella azteca was examined in a series of spiked sediment exposures. Juvenile H. azteca were exposed for 28d (chronic) to a concentration series of D5 in two natural sediments of differing organic carbon content (O.C.) and particle size composition. The chronic, LC50s were 191 and 857μgD5g(-1) dry weight for Lakes Erie (0.5% O.C.) and Restoule (11% O.C.) respectively. Inhibition of growth only occurred with the L. Restoule spiked sediment with a resultant EC25 of 821μgg(-1)dw. Lethality was a more sensitive endpoint than growth inhibition. Biota sediment accumulation factors (BSAFs, 28d) were <1 indicating that D5 did not bioconcentrate based on lipid normalized tissue concentrations and organic carbon normalized sediment concentrations. Organic carbon (OC) in the sediment appeared to be protective, however normalization to OC did not normalize the toxicity. Normalization of D5 concentrations in the sediments to sand content did normalize the toxicity and LC50 values of 3180 and 3570μg D5g(-1) sand dw were determined to be statistically the same.


Environmental Science & Technology | 2014

Uptake and speciation of vanadium in the benthic invertebrate Hyalella azteca.

Madeleine Jensen-Fontaine; Warren P. Norwood; Mitra Brown; D. George Dixon; X. Chris Le

Vanadium has the potential to leach into the environment from petroleum coke, an oil sands byproduct. To determine uptake of vanadium species in the biota, we exposed the benthic invertebrate Hyalella azteca with increasing concentrations of two different vanadium species, V(IV) and V(V), for seven days. The concentrations of vanadium in the H. azteca tissue increased with the concentration of vanadium in the exposure water. Speciation analysis revealed that V(IV) in the exposure water was oxidized to V(V) between renewal periods, and therefore the animals were mostly exposed to V(V). Speciation analysis of the H. azteca tissue showed the presence of V(V), V(IV), and an unidentified vanadium species. These results indicate the uptake and metabolism of vanadium by H. azteca. Because H. azteca are widely distributed in freshwater systems and are an important food supply for many fish, determining the uptake and metabolism of vanadium allows for a better understanding of the potential environmental effects on invertebrates.


Environmental Science & Technology | 2015

Metal–Polycyclic Aromatic Hydrocarbon Mixture Toxicity in Hyalella azteca. 1. Response Surfaces and Isoboles To Measure Non-additive Mixture Toxicity and Ecological Risk

Patrick T. Gauthier; Warren P. Norwood; Ellie E. Prepas; Greg G. Pyle

Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) occur ubiquitously in aquatic environments, yet relatively little is known regarding their potential to produce non-additive toxicity (i.e., antagonism or potentiation). A review of the lethality of metal-PAH mixtures in aquatic biota revealed that more-than-additive lethality is as common as strictly additive effects. Approaches to ecological risk assessment do not consider non-additive toxicity of metal-PAH mixtures. Forty-eight-hour water-only binary mixture toxicity experiments were conducted to determine the additive toxic nature of mixtures of Cu, Cd, V, or Ni with phenanthrene (PHE) or phenanthrenequinone (PHQ) using the aquatic amphipod Hyalella azteca. In cases where more-than-additive toxicity was observed, we calculated the possible mortality rates at Canadas environmental water quality guideline concentrations. We used a three-dimensional response surface isobole model-based approach to compare the observed co-toxicity in juvenile amphipods to predicted outcomes based on concentration addition or effects addition mixtures models. More-than-additive lethality was observed for all Cu-PHE, Cu-PHQ, and several Cd-PHE, Cd-PHQ, and Ni-PHE mixtures. Our analysis predicts Cu-PHE, Cu-PHQ, Cd-PHE, and Cd-PHQ mixtures at the Canadian Water Quality Guideline concentrations would produce 7.5%, 3.7%, 4.4% and 1.4% mortality, respectively.

Collaboration


Dive into the Warren P. Norwood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg G. Pyle

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Degao Wang

Dalian Maritime University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge