Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wassana Yantasee is active.

Publication


Featured researches published by Wassana Yantasee.


Journal of Hazardous Materials | 2010

Selective Capture of Cesium and Thallium from Natural Waters and Simulated Wastes with Copper Ferrocyanide Functionalized Mesoporous Silica

Thanapon Sangvanich; Vichaya Sukwarotwat; Robert J. Wiacek; Rafal M. Grudzien; Glen E. Fryxell; R. Shane Addleman; Charles Timchalk; Wassana Yantasee

Copper(II) ferrocyanide on mesoporous silica (FC-Cu-EDA-SAMMS) has been evaluated against iron(III) hexacyanoferrate(II) (insoluble Prussian Blue) for removing cesium (Cs(+)) and thallium (Tl(+)) from natural waters and simulated acidic and alkaline wastes. From pH 0.1-7.3, FC-Cu-EDA-SAMMS had greater affinities for Cs and Tl and was less affected by the solution pH, competing cations, and matrices. SAMMS also outperformed Prussian Blue in terms of adsorption capacities (e.g., 21.7 versus 2.6 mg Cs/g in acidic waste stimulant (pH 1.1), 28.3 versus 5.8 mg Tl/g in seawater), and rate (e.g., over 95 wt% of Cs was removed from seawater after 2 min with SAMMS, while only 75 wt% was removed with Prussian Blue). SAMMS also had higher stability (e.g., 2.5-13-fold less Fe dissolved from 2 to 24 h of contact time). In addition to environmental applications, SAMMS has great potential to be used as orally administered drug for limiting the absorption of radioactive Cs and toxic Tl in gastrointestinal tract.


Frontiers in Bioscience | 2005

CARBON NANOTUBES (CNTs) FOR THE DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS

Yuehe Lin; Wassana Yantasee; Joseph Wang

Carbon nanotube (CNT) is a very attractive material for the development of biosensors because of its capability to provide strong electrocatalytic activity and minimize surface fouling of the sensors. This article reviews our recent developments of oxidase- and dehydrogenase-amperometric biosensors based on the immobilization of CNTs, the co-immobilization of enzymes on the CNTs/Nafion or the CNT/Teflon composite materials, or the attachment of enzymes on the controlled-density aligned CNT-nanoelectrode arrays. The excellent electrocatalytic activities of the CNTs on the redox reactions of hydrogen peroxide, nicotinamide adenine dinucleotide (NADH), and homocysteine have been demonstrated. Successful applications of the CNT-based biosensors reviewed herein include the low-potential detections of glucose, organophosphorus compounds, and alcohol.


Environmental Science & Technology | 2010

Phosphate Removal by Anion Binding on Functionalized Nanoporous Sorbents

Wilaiwan Chouyyok; Robert J. Wiacek; Kanda Pattamakomsan; Thanapon Sangvanich; Rafal M. Grudzien; Glen E. Fryxell; Wassana Yantasee

Phosphate was captured from aqueous solutions by cationic metal-EDA complexes anchored inside mesoporous silica MCM-41 supports (Cu(II)-EDA-SAMMS and Fe(III)-EDA-SAMMS). Fe-EDA-SAMMS was more effective at capturing phosphate than the Cu-EDA-SAMMS and was further studied for matrix effects (e.g., pH, ionic strength, and competing anions) and sorption performance (e.g., capacity and rate). The adsorption of phosphate was highly pH dependent; it increased with increasing pH from 1.0 to 6.5, and decreased above pH 6.5. The adsorption was affected by high ionic strength (0.1 M of NaCl). In the presence of 1000-fold molar excess of chloride and nitrate anions, phosphate removal by Fe-EDA-SAMMS was not affected. Slight, moderate and large impacts were seen with bicarbonate, sulfate, and citrate anions, respectively. The phosphate adsorption data on Fe-EDA-SAMMS agreed well with the Langmuir model with the estimated maximum capacity of 43.3 mg/g. The material displayed rapid sorption rate (99% of phosphate removal within 1 min) and lowering the phosphate content to approximately 10 microg/L of phosphorus, which is lower than the EPAs established freshwater contaminant level for phosphorus (20 microg/L).


Environmental Health Perspectives | 2007

Electrochemical Sensors for the Detection of Lead and Other Toxic Heavy Metals: The Next Generation of Personal Exposure Biomonitors

Wassana Yantasee; Yuehe Lin; Kitiya Hongsirikarn; Glen E. Fryxell; Raymond S. Addleman; Charles Timchalk

To support the development and implementation of biological monitoring programs, we need quantitative technologies for measuring xenobiotic exposure. Microanalytical based sensors that work with complex biomatrices such as blood, urine, or saliva are being developed and validated and will improve our ability to make definitive associations between chemical exposures and disease. Among toxic metals, lead continues to be one of the most problematic. Despite considerable efforts to identify and eliminate Pb exposure sources, this metal remains a significant health concern, particularly for young children. Ongoing research focuses on the development of portable metal analyzers that have many advantages over current available technologies, thus potentially representing the next generation of toxic metal analyzers. In this article, we highlight the development and validation of two classes of metal analyzers for the voltammetric detection of Pb, including: a) an analyzer based on flow injection analysis and anodic stripping voltammetry at a mercury-film electrode, and b) Hg-free metal analyzers employing adsorptive stripping voltammetry and novel nanostructure materials that include the self-assembled monolayers on mesoporous supports and carbon nanotubes. These sensors have been optimized to detect Pb in urine, blood, and saliva as accurately as the state-of-the-art inductively coupled plasma-mass spectrometry with high reproducibility, and sensitivity allows. These improved and portable analytical sensor platforms will facilitate our ability to conduct biological monitoring programs to understand the relationship between chemical exposure assessment and disease outcomes.


Journal of Hazardous Materials | 2009

Selective removal of lanthanides from natural waters, acidic streams and dialysate

Wassana Yantasee; Glen E. Fryxell; R. Shane Addleman; Robert J. Wiacek; View Koonsiripaiboon; Kanda Pattamakomsan; Vichaya Sukwarotwat; Jide Xu; Kenneth N. Raymond

The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, which increases public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd and Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS), that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (Prop-Phos), and 1-hydroxy-2-pyridinone (1,2-HOPO), from natural waters (river, ground and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate. The affinity, capacity, and kinetics of the lanthanide sorption, as well as regenerability of SAMMS materials were investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. In acid solutions, Prop-Phos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their use in chromatographic lanthanide separation. Over 95% of 100 microg/L of Gd in dialysate was removed by the Prop-Phos-SAMMS after 1 min and 99% over 10 min. SAMMS can be regenerated with an acid wash (0.5M HCl) without losing the binding properties. Thus, they have a great potential to be used as in large-scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and in sorbent dialyzers for treatment of acute lanthanide poisoning.


Analytica Chimica Acta | 2008

Detection of Cd, Pb, and Cu in non-pretreated natural waters and urine with thiol functionalized mesoporous silica and Nafion composite electrodes.

Wassana Yantasee; Busarakum Charnhattakorn; Glen E. Fryxell; Yuehe Lin; Charles Timchalk; R. Shane Addleman

Electrochemical sensors have great potential for environmental monitoring of toxic metal ions in waters due to their portability, field-deployability and excellent detection limits. However, electrochemical sensors employing mercury-free approaches typically suffer from binding competition for metal ions and fouling by organic substances and surfactants in natural waters, making sample pretreatments such as wet ashing necessary. In this work, we have developed mercury-free sensors by coating a composite of thiol self-assembled monolayers on mesoporous supports (SH-SAMMS) and Nafion on glassy-carbon electrodes. With the combined benefit of SH-SAMMS as an outstanding metal preconcentrator and Nafion as an antifouling binder, the sensors could detect 0.5 pp b of Pb and 2.5 pp b of Cd in river water, Hanford groundwater, and seawater with a minimal amount of preconcentration time (few minutes) and without any sample pretreatment. The sensor could also detect 2.5 pp b of Cd, Pb, and Cu simultaneously. The electrodes have long service times and excellent single and inter-electrode reproducibility (5% R.S.D. after 8 consecutive measurements). Unlike SAMMS-carbon paste electrodes, the SAMMS-Nafion electrodes were not fouled in samples containing albumin and successfully detected Cd in human urine. Other potentially confounding factors affecting metal detection at SAMMS-Nafion electrodes were studied, including pH effect, transport resistance of metal ions, and detection interference. With the ability to reliably detect low metal concentration ranges without sample pretreatment and fouling, SAMMS-Nafion composite sensors have the potential to become the next-generation metal analyzers for environmental and bio-monitoring of toxic metals.


Analyst | 2008

Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles

Wassana Yantasee; Kitiya Hongsirikarn; Cynthia L. Warner; Daiwon Choi; Thanapon Sangvanich; Mychailo B. Toloczko; Marvin G. Warner; Glen E. Fryxell; R. Shane Addleman; Charles Timchalk

Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics, including toxic metals. Detection of metal ions in urine has been problematic due to the protein competition and electrode fouling. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90 s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g L(-1) of DMSA-Fe3O4, the sensor could detect background level of Pb (0.5 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%RSD of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (<1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.


Chemsuschem | 2010

High‐Performance, Superparamagnetic, Nanoparticle‐Based Heavy Metal Sorbents for Removal of Contaminants from Natural Waters

Cynthia L. Warner; R. Shane Addleman; Anthony D. Cinson; Timothy C. Droubay; Mark H. Engelhard; Michael A. Nash; Wassana Yantasee; Marvin G. Warner

We describe the synthesis and characterization of high-performance, superparamagnetic, iron oxide nanoparticle-based, heavy metal sorbents, which demonstrate excellent affinity for the separation of heavy metals in contaminated water systems (i.e., spiked Columbia River water). The magnetic nanoparticle sorbents were prepared from an easy-to-synthesize iron oxide precursor, followed by a simple, one-step ligand exchange reaction to introduce an affinity ligand to the nanoparticle surface that is specific to a heavy metal or class of heavy metal contaminants. The engineered magnetic nanoparticle sorbents have inherently high active surface areas, allowing for increased binding capacities. To demonstrate the performance of the nanoparticle sorbents, river water was spiked with specific metals and exposed to low concentrations of the functionalized nanoparticles. In almost all cases, the nanoparticles were found to be superior to commercially available sorbent materials as well as the unfunctionalized iron oxide nanoparticles.


Environmental Science & Technology | 2010

Selective removal of copper (II) from natural waters by nanoporous sorbents functionalized with chelating diamines

Wilaiwan Chouyyok; Yongsoon Shin; Joseph D. Davidson; William D. Samuels; Nikki H. LaFemina; Ryan D. Rutledge; Glen E. Fryxell; Thanapon Sangvanich; Wassana Yantasee

Copper has been identified as a pollutant of concern by the U.S. Environmental Protection Agency (EPA) because of its widespread occurrence and toxic impact in the environment. Three nanoporous sorbents containing chelating diamine functionalities were evaluated for Cu(2+) adsorption from natural waters: ethylenediamine functionalized self-assembled monolayers on mesoporous supports (EDA-SAMMS), ethylenediamine functionalized activated carbon (AC-CH(2)-EDA), and 1,10-phenanthroline functionalized mesoporous carbon (Phen-FMC). The pH dependence of Cu(2+) sorption, Cu(2+) sorption capacities, rates, and selectivity of the sorbents were determined and compared with those of commercial sorbents (Chelex-100 ion-exchange resin and Darco KB-B activated carbon). All three chelating diamine sorbents showed excellent Cu(2+) removal (approximately 95-99%) from river water and seawater over the pH range 6.0-8.0. EDA-SAMMS and AC-CH(2)-EDA demonstrated rapid Cu(2+) sorption kinetics (minutes) and good sorption capacities (26 and 17 mg Cu/g sorbent, respectively) in seawater, whereas Phen-FMC had excellent selectivity for Cu(2+) over other metal ions (e.g., Ca(2+), Fe(2+), Ni(2+), and Zn(2+)) and was able to achieve Cu below the EPA recommended levels for river and sea waters.


Separation Science and Technology | 2003

Removal of Heavy Metals from Aqueous Solution Using Novel Nanoengineered Sorbents: Self-Assembled Carbamoylphosphonic Acids on Mesoporous Silica

Wassana Yantasee; Yuehe Lin; Glen E. Fryxell; Brad J. Busche; Jerome C. Birnbaum

Self‐assembled monolayers of carbamoylphosphonic acids (acetamide phosphonic acid and propionamide phosphonic acid) on mesoporous silica supports were studied as potential absorbents for heavy and transition metal ions in aqueous wastes. The adsorption capacity, selectivity, and kinetics of the materials in sequestering metal ions, including Cd2 +, Co2 +, Cu2 +, Cr3 +, Pb2 +, Ni2 +, Zn2 +, and Mn2 +, were measured in batch experiments with excess sodium ion. The solution pH ranged from 2.2 to 5.5. The kinetics study shows that the adsorption reached equilibrium in seconds, indicating that there is little resistance to mass transfer, intraparticle diffusion, and surface chemical reaction. The competitive adsorption study found the phosphonic acid‐SAMMS to have an affinity for divalent metal ions in decreasing order of Pb2 + > Cu2 + > Mn2 + > Cd2 + > Zn2 + > Co2 + > Ni2 +. The measured Cd2 +adsorption isotherm was of the Langmuirian type and had a saturation binding capacity of 0.32 mmol/g.

Collaboration


Dive into the Wassana Yantasee's collaboration.

Top Co-Authors

Avatar

Glen E. Fryxell

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yuehe Lin

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Shane Addleman

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles Timchalk

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge