Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne Blosser is active.

Publication


Featured researches published by Wayne Blosser.


Molecular Cancer Therapeutics | 2015

LY2606368 Causes Replication Catastrophe and Antitumor Effects through CHK1-Dependent Mechanisms

Constance King; H. Bruce Diaz; Samuel C. McNeely; Darlene Barnard; Jack Dempsey; Wayne Blosser; Richard P. Beckmann; David Anthony Barda; Mark S. Marshall

CHK1 is a multifunctional protein kinase integral to both the cellular response to DNA damage and control of the number of active replication forks. CHK1 inhibitors are currently under investigation as chemopotentiating agents due to CHK1s role in establishing DNA damage checkpoints in the cell cycle. Here, we describe the characterization of a novel CHK1 inhibitor, LY2606368, which as a single agent causes double-stranded DNA breakage while simultaneously removing the protection of the DNA damage checkpoints. The action of LY2606368 is dependent upon inhibition of CHK1 and the corresponding increase in CDC25A activation of CDK2, which increases the number of replication forks while reducing their stability. Treatment of cells with LY2606368 results in the rapid appearance of TUNEL and pH2AX-positive double-stranded DNA breaks in the S-phase cell population. Loss of the CHK1-dependent DNA damage checkpoints permits cells with damaged DNA to proceed into early mitosis and die. The majority of treated mitotic nuclei consist of extensively fragmented chromosomes. Inhibition of apoptosis by the caspase inhibitor Z-VAD-FMK had no effect on chromosome fragmentation, indicating that LY2606368 causes replication catastrophe. Changes in the ratio of RPA2 to phosphorylated H2AX following LY2606368 treatment further support replication catastrophe as the mechanism of DNA damage. LY2606368 shows similar activity in xenograft tumor models, which results in significant tumor growth inhibition. LY2606368 is a potent representative of a novel class of drugs for the treatment of cancer that acts through replication catastrophe. Mol Cancer Ther; 14(9); 2004–13. ©2015 AACR.


Molecular Cancer Therapeutics | 2008

High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis.

Jonathan Low; Shuguang Huang; Wayne Blosser; Michele Dowless; John Burch; Blake Lee Neubauer; Louis Stancato

Although the cycling of eukaryotic cells has long been a primary focus for cancer therapeutics, recent advances in imaging and data analysis allow even further definition of cellular events as they occur in individual cells and cellular subpopulations in response to treatment. High-content imaging (HCI) has been an effective tool to elucidate cellular responses to a variety of agents; however, these data were most frequently observed as averages of the entire captured population, unnecessarily decreasing the resolution of each assay. Here, we dissect the eukaryotic cell cycle into individual cellular subpopulations using HCI in conjunction with unsupervised K-means clustering. We generate distinct phenotypic fingerprints for each major cell cycle and mitotic compartment and use those fingerprints to screen a library of 310 commercially available chemotherapeutic agents. We determine that the cell cycle arrest phenotypes caused by these agents are similar to, although distinct from, those found in untreated cells and that these distinctions frequently suggest the mechanism of action. We then show via subpopulation analysis that these arrest phenotypes are similar in both mouse models and in culture. HCI analysis of cell cycle using data obtained from individual cells under a broad range of research conditions and grouped into cellular subpopulations represents a powerful method to discern both cellular events and treatment effects. In particular, this technique allows for a more accurate means of assessing compound selectivity and leads to more meaningful comparisons between so-called targeted therapeutics. [Mol Cancer Ther 2008;7(8):2455–63]


Molecular Cancer Therapeutics | 2011

A robust high-content imaging approach for probing the mechanism of action and phenotypic outcomes of cell cycle modulators

Jeffrey J Sutherland; Jonathan Low; Wayne Blosser; Michele Dowless; Thomas A. Engler; Louis Stancato

High-content screening is increasingly used to elucidate changes in cellular biology arising from treatment with small molecules and biological probes. We describe a cell classifier for automated analysis of multiparametric data from immunofluorescence microscopy and characterize the phenotypes of 41 cell-cycle modulators, including several protein kinase inhibitors in preclinical and clinical development. This method produces a consistent assessment of treatment-induced phenotypes across experiments done by different biologists and highlights the prevalence of nonuniform and concentration-dependent cellular response to treatment. Contrasting cell phenotypes from high-content screening to kinase selectivity profiles from cell-free assays highlights the limited utility of enzyme potency ratios in understanding the mechanism of action for cell-cycle kinase inhibitors. Our cell-level approach for assessing phenotypic outcomes is reliable, reproducible and capable of supporting medium throughput analyses of a wide range of cellular perturbations. Mol Cancer Ther; 10(2); 242–54. ©2011 AACR.


Current Chemical Genomics | 2009

Phenotypic fingerprinting of small molecule cell cycle kinase inhibitors for drug discovery.

Jonathan Low; Arunava Chakravartty; Wayne Blosser; Michele Dowless; Christopher Chalfant; Patty Bragger; Louis Stancato

Phenotypic drug discovery, primarily abandoned in the 1980’s in favor of targeted approaches to drug development, is once again demonstrating its value when used in conjunction with new technologies. Phenotypic discovery has been brought back to the fore mainly due to recent advances in the field of high content imaging (HCI). HCI elucidates cellular responses using a combination of immunofluorescent assays and computer analysis which increase both the sensitivity and throughput of phenotypic assays. Although HCI data characterize cellular responses in individual cells, these data are usually analyzed as an aggregate of the treated population and are unable to discern differentially responsive subpopulations. A collection of 44 kinase inhibitors affecting cell cycle and apoptosis were characterized with a number of univariate, bivariate, and multivariate subpopulation analyses demonstrating that each level of complexity adds additional information about the treated populations and often distinguishes between compounds with seemingly similar mechanisms of action. Finally, these subpopulation data were used to characterize compounds as they relate in chemical space.


Journal of Biological Chemistry | 2013

LY2228820 Dimesylate, a Selective Inhibitor of p38 Mitogen-activated Protein Kinase, Reduces Angiogenic Endothelial Cord Formation in Vitro and in Vivo

Courtney M. Tate; Wayne Blosser; Lisa Wyss; Glenn F. Evans; Qi Xue; Yong Pan; Louis Stancato

Background: Angiogenesis is a critical process for tumor growth and survival. Results: LY2228820 dimesylate, a p38 MAPK-specific inhibitor, or shRNA knockdown of p38α, MK2, or HSP27 reduced angiogenic cord formation. Conclusion: p38 MAPK modulated soluble factors released from stromal and tumor cells and reduced their downstream signaling in endothelial cells. Significance: Antiangiogenic activity of LY2228820 dimesylate may lead to anti-tumor growth effects. LY2228820 dimesylate is a highly selective small molecule inhibitor of p38α and p38β mitogen-activated protein kinases (MAPKs) that is currently under clinical investigation for human malignancies. p38 MAPK is implicated in a wide range of biological processes, in particular those that support tumorigenesis. One such process, angiogenesis, is required for tumor growth and metastasis, and many new cancer therapies are therefore directed against the tumor vasculature. Using an in vitro co-culture endothelial cord formation assay, a surrogate of angiogenesis, we investigated the role of p38 MAPK in growth factor- and tumor-driven angiogenesis using LY2228820 dimesylate treatment and by shRNA gene knockdown. p38 MAPK was activated in endothelial cells upon growth factor stimulation, with inhibition by LY2228820 dimesylate treatment causing a significant decrease in VEGF-, bFGF-, EGF-, and IL-6-induced endothelial cord formation and an even more dramatic decrease in tumor-driven cord formation. In addition to involvement in downstream cytokine signaling, p38 MAPK was important for VEGF, bFGF, EGF, IL-6, and other proangiogenic cytokine secretion in stromal and tumor cells. LY2228820 dimesylate results were substantiated using p38α MAPK-specific shRNA and shRNA against the downstream p38 MAPK effectors MAPKAPK-2 and HSP27. Using in vivo models of functional neoangiogenesis, LY2228820 dimesylate treatment reduced hemoglobin content in a plug assay and decreased VEGF-A-stimulated vascularization in a mouse ear model. Thus, p38α MAPK is implicated in tumor angiogenesis through direct tumoral effects and through reduction of proangiogenic cytokine secretion via the microenvironment.


Journal of Biomolecular Screening | 2007

High-Content Imaging Analysis of the Knockdown Effects of Validated siRNAs and Antisense Oligonucleotides

Jonathan Low; Shuguang Huang; Michele Dowless; Wayne Blosser; Thomas M. Vincent; Scott Davis; Jeff Hodson; Erich Koller; Eric G. Marcusson; Kerry Blanchard; Louis Stancato

High-content imaging (HCI) provides researchers with a powerful tool for understanding cellular processes. Although phenotypic analysis generated through HCI is a potent technique to determine the overall cellular effects of a given treatment, it frequently produces complex data sets requiring extensive interpretation. The authors developed statistical analyses to decrease the time spent to determine the outcome of each HCI assay and to better understand complex phenotypic changes. To test these tools, the authors performed a comparison experiment between 2 types of oligonucleotide-mediated gene silencing (OMGS), antisense oligonucleotides (ASOs), and short, double-stranded RNAs (siRNAs). Although similar in chemical structure, these 2 methods differ in cellular mechanism of action and off-target effects. Using a library of 50 validated ASOs and siRNAs to the same targets, the authors characterized the differential effects of these 2 technologies using a HeLa cell G2-M cell cycle assay. Although knockdown of a variety of targets by ASOs or siRNAs affected the cell cycle profile, few of those targets were affected by both ASOs and siRNAs. Distribution analysis of population changes induced through target knockdown led to the identification of targets that, when inhibited, could affect the G2-M transition in the cell cycle in a statistically significant manner. The distinctly different mechanisms of action of these 2 forms of gene silencing may help define the use of these treatments in both clinical and research environments. (Journal of Biomolecular Screening 2007:775-788)


PLOS ONE | 2015

A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology

Courtney M. Tate; Jacquelyn Mc Entire; Roberto Pallini; Eliza Vakana; Lisa Wyss; Wayne Blosser; Lucia Ricci-Vitiani; Quintino Giorgio D’Alessandris; Liliana Morgante; Stefano Giannetti; Luigi Maria Larocca; Matilde Todaro; Antonina Benfante; Maria Luisa Colorito; Giorgio Stassi; Ruggero De Maria; Scott W. Rowlinson; Louis Stancato

Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.


Clinical Cancer Research | 2017

The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma

Caitlin D. Lowery; Alle VanWye; Michele Dowless; Wayne Blosser; Beverly L. Falcon; Julie Stewart; Jennifer R. Stephens; Richard P. Beckmann; Aimee Bence Lin; Louis Stancato

Purpose: Checkpoint kinase 1 (CHK1) is a key regulator of the DNA damage response and a mediator of replication stress through modulation of replication fork licensing and activation of S and G2–M cell-cycle checkpoints. We evaluated prexasertib (LY2606368), a small-molecule CHK1 inhibitor currently in clinical testing, in multiple preclinical models of pediatric cancer. Following an initial assessment of prexasertib activity, this study focused on the preclinical models of neuroblastoma. Experimental Design: We evaluated the antiproliferative activity of prexasertib in a panel of cancer cell lines; neuroblastoma cell lines were among the most sensitive. Subsequent Western blot and immunofluorescence analyses measured DNA damage and DNA repair protein activation. Prexasertib was investigated in several cell line–derived xenograft mouse models of neuroblastoma. Results: Within 24 hours, single-agent prexasertib promoted γH2AX–positive double-strand DNA breaks and phosphorylation of DNA damage sensors ATM and DNA–PKcs, leading to neuroblastoma cell death. Knockdown of CHK1 and/or CHK2 by siRNA verified that the double-strand DNA breaks and cell death elicited by prexasertib were due to specific CHK1 inhibition. Neuroblastoma xenografts rapidly regressed following prexasertib administration, independent of starting tumor volume. Decreased Ki67 and increased immunostaining of endothelial and pericyte markers were observed in xenografts after only 6 days of exposure to prexasertib, potentially indicating a swift reduction in tumor volume and/or a direct effect on tumor vasculature. Conclusions: Overall, these data demonstrate that prexasertib is a specific inhibitor of CHK1 in neuroblastoma and leads to DNA damage and cell death in preclinical models of this devastating pediatric malignancy. Clin Cancer Res; 23(15); 4354–63. ©2017 AACR.


Journal of Biomolecular Screening | 2012

Knockdown of Ubiquitin Ligases in Glioblastoma Cancer Stem Cells Leads to Cell Death and Differentiation

Jonathan Low; Wayne Blosser; Michele Dowless; Lucia Ricci-Vitiani; R. Pallini; Ruggero De Maria; Louis Stancato

The cancer stem cell (CSC) hypothesis proposes that a subpopulation of CSCs is frequently responsible for chemotherapy resistance and metastasis and is now a point of attack for research into the next generation of therapeutics. Although many of these agents are directed at inducing CSC apoptosis (as well as the bulk tumor), some agents may also decrease cell “stemness” possibly through induction of differentiation. Ubiquitin ligases, critical to virtually all cellular signaling systems, alter the degradation or trafficking of most proteins in the cell, and indeed broad perturbation of this system, through inhibition of the proteosome, is a successful cancer treatment. The authors examined several glioblastoma stem cell isolates pre- and postdifferentiation to elucidate the phenotypic effects following shRNA knockdown of ubiquitin ligases. The results were analyzed using high-content imaging (HCI) and identified ubiquitin ligases capable of inducing both CSC differentiation and apoptosis. Quite often these effects were specific to CSCs, as ubiquitin ligase knockdown in terminally differentiated progeny yielded markedly different results. The resolution of HCI at the subpopulation level makes it an excellent tool for the analysis of CSC phenotypic changes induced by shRNA knockdown and may suggest additional methods to target these cells for death or differentiation.


Clinical Cancer Research | 2017

Olaratumab Exerts Antitumor Activity in Preclinical Models of Pediatric Bone and Soft Tissue Tumors through Inhibition of Platelet-Derived Growth Factor Receptor α

Caitlin D. Lowery; Wayne Blosser; Michele Dowless; Shelby Knoche; Jennifer R. Stephens; Huiling Li; David Surguladze; Nick Loizos; Debra Luffer-Atlas; Gerard Joseph Oakley; Qianxu Guo; Seema Iyer; Brian P. Rubin; Louis Stancato

Purpose: Platelet-derived growth factor receptor α (PDGFRα) is implicated in several adult and pediatric malignancies, where activated signaling in tumor cells and/or cells within the microenvironment drive tumorigenesis and disease progression. Olaratumab (LY3012207/IMC-3G3) is a human mAb that exclusively binds to PDGFRα and recently received accelerated FDA approval and conditional EMA approval for treatment of advanced adult sarcoma patients in combination with doxorubicin. In this study, we investigated olaratumab in preclinical models of pediatric bone and soft tissue tumors. Experimental Design: PDGFRα expression was evaluated by qPCR and Western blot analysis. Olaratumab was investigated in in vitro cell proliferation and invasion assays using pediatric osteosarcoma and rhabdoid tumor cell lines. In vivo activity of olaratumab was assessed in preclinical mouse models of pediatric osteosarcoma and malignant rhabdoid tumor. Results: In vitro olaratumab treatment of osteosarcoma and rhabdoid tumor cell lines reduced proliferation and inhibited invasion driven by individual platelet-derived growth factors (PDGFs) or serum. Furthermore, olaratumab delayed primary tumor growth in mouse models of pediatric osteosarcoma and malignant rhabdoid tumor, and this activity was enhanced by combination with either doxorubicin or cisplatin. Conclusions: Overall, these data indicate that olaratumab, alone and in combination with standard of care, blocks the growth of some preclinical PDGFRα-expressing pediatric bone and soft tissue tumor models. Clin Cancer Res; 24(4); 847–57. ©2017 AACR.

Collaboration


Dive into the Wayne Blosser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Wyss

Eli Lilly and Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge