Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Stewart is active.

Publication


Featured researches published by Julie Stewart.


Molecular Cancer Therapeutics | 2015

Identification of LY2510924, a Novel Cyclic Peptide CXCR4 Antagonist That Exhibits Antitumor Activities in Solid Tumor and Breast Cancer Metastatic Models

Sheng-Bin Peng; Xiaoyi Zhang; Donald C. Paul; Lisa Kays; Wendy H. Gough; Julie Stewart; Mark T. Uhlik; Qi Chen; Yu-Hua Hui; Maciej J. Zamek-Gliszczynski; John A. Wijsman; Kelly M. Credille; Liang Zeng Yan

Emerging evidence demonstrates that stromal cell-derived factor 1 (SDF-1) and CXCR4, a chemokine and chemokine receptor pair, play important roles in tumorigenesis. In this report, we describe a small cyclic peptide, LY2510924, which is a potent and selective CXCR4 antagonist currently in phase II clinical studies for cancer. LY2510924 specifically blocked SDF-1 binding to CXCR4 with IC50 value of 0.079 nmol/L, and inhibited SDF-1–induced GTP binding with Kb value of 0.38 nmol/L. In human lymphoma U937 cells expressing endogenous CXCR4, LY2510924 inhibited SDF-1–induced cell migration with IC50 value of 0.26 nmol/L and inhibited SDF-1/CXCR4-mediated intracellular signaling. LY2510924 exhibited a concentration-dependent inhibition of SDF-1–stimulated phospho-ERK and phospho-Akt in tumor cells. Biochemical and cellular analyses revealed that LY2510924 had no apparent agonist activity. Pharmacokinetic analyses suggested that LY2510924 had acceptable in vivo stability and a pharmacokinetic profile similar to a typical small-molecular inhibitor in preclinical species. LY2510924 showed dose-dependent inhibition of tumor growth in human xenograft models developed with non–Hodgkin lymphoma, renal cell carcinoma, lung, and colon cancer cells that express functional CXCR4. In MDA-MB-231, a breast cancer metastatic model, LY2510924 inhibited tumor metastasis by blocking migration/homing process of tumor cells to the lung and by inhibiting cell proliferation after tumor cell homing. Collectively, the preclinical data support further investigation of LY2510924 in clinical studies for cancer. Mol Cancer Ther; 14(2); 480–90. ©2014 AACR.


PLOS ONE | 2016

Inhibition of CXCR4 by LY2624587, a Fully Humanized Anti-CXCR4 Antibody Induces Apoptosis of Hematologic Malignancies.

Sheng-Bin Peng; Xiaoyi Zhang; Donald C. Paul; Lisa Kays; Ming Ye; Peter Edward Vaillancourt; Michele Dowless; Louis Stancato; Julie Stewart; Mark T. Uhlik; Haiyan Long; Shaoyou Chu; Victor H. Obungu

SDF-1 and CXCR4 are a chemokine and chemokine receptor pair playing critical roles in tumorigenesis. Overexpression of CXCR4 is a hallmark of many hematological malignancies including acute myeloid leukemia, chronic lymphocytic leukemia and non-Hodgkin’s lymphoma, and generally correlates with a poor prognosis. In this study, we developed a humanized anti-CXCR4 monoclonal antibody, LY2624587 as a potent CXCR4 antagonist that was advanced into clinical study for cancer. LY2624587 blocked SDF-1 binding to CXCR4 with an IC50 of 0.26 nM, and inhibited SDF-1-induced GTP binding with a Kb of 0.66 nM. In human lymphoma U937 and leukemia CCRF-CEM cells expressing endogenous CXCR4, LY2624587 inhibited SDF-1-induced cell migration with IC50 values of 3.7 and 0.26 nM, respectively. This antibody also inhibited CXCR4 and SDF-1 mediated cell signaling including activation of MAPK and AKT in tumor cells expressing CXCR4. Bifocal microscopic and flow cytometry analyses revealed that LY2624587 mediated receptor internalization and caused CXCR4 down-regulation on the cell surface. In human hematologic cancer cells, LY2624587 caused dose dependent apoptosis in vitro and in vivo. In mouse xenograft models developed with human leukemia and lymphoma cells expressing high levels of CXCR4, LY2624587 exhibited dose-dependent tumor growth inhibition and provided significant survival benefit in a disseminated lymphoma model. Collectively, we have demonstrated that CXCR4 inhibition by LY2624587 has the potential for the treatment of human hematological malignancies.


Drug Discovery Today | 2013

High-content multiplexed tissue imaging and quantification for cancer drug discovery.

Beverly L. Falcon; Julie Stewart; Scharri Ezell; Jeffrey C. Hanson; John A. Wijsman; Xiang Ye; Eric Westin; Greg Donoho; Kelly M. Credille; Mark T. Uhlik

Targeting multiple hallmarks of cancer with drug combinations may provide unique opportunities for cancer therapeutics; however, phenotypic quantification is necessary to understand in vivo mechanisms of action of each drug alone or in combination. Immunohistochemistry (IHC) can quantify phenotypic changes, but traditional methods are not amenable for high-throughput drug discovery. In this article, we describe a high-content method to quantify changes in tumor angiogenesis, vascular normalization, hypoxia, tumor cell proliferation, and apoptosis using IHC. This method to quantify tumor model phenotypes can be useful for cancer drug discovery by increasing the understanding of: (i) tumor models used in efficacy studies, (ii) changes occurring during the growth of the tumor, and (iii) novel mechanisms of actions of cancer therapeutics.


Clinical Cancer Research | 2017

The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma

Caitlin D. Lowery; Alle VanWye; Michele Dowless; Wayne Blosser; Beverly L. Falcon; Julie Stewart; Jennifer R. Stephens; Richard P. Beckmann; Aimee Bence Lin; Louis Stancato

Purpose: Checkpoint kinase 1 (CHK1) is a key regulator of the DNA damage response and a mediator of replication stress through modulation of replication fork licensing and activation of S and G2–M cell-cycle checkpoints. We evaluated prexasertib (LY2606368), a small-molecule CHK1 inhibitor currently in clinical testing, in multiple preclinical models of pediatric cancer. Following an initial assessment of prexasertib activity, this study focused on the preclinical models of neuroblastoma. Experimental Design: We evaluated the antiproliferative activity of prexasertib in a panel of cancer cell lines; neuroblastoma cell lines were among the most sensitive. Subsequent Western blot and immunofluorescence analyses measured DNA damage and DNA repair protein activation. Prexasertib was investigated in several cell line–derived xenograft mouse models of neuroblastoma. Results: Within 24 hours, single-agent prexasertib promoted γH2AX–positive double-strand DNA breaks and phosphorylation of DNA damage sensors ATM and DNA–PKcs, leading to neuroblastoma cell death. Knockdown of CHK1 and/or CHK2 by siRNA verified that the double-strand DNA breaks and cell death elicited by prexasertib were due to specific CHK1 inhibition. Neuroblastoma xenografts rapidly regressed following prexasertib administration, independent of starting tumor volume. Decreased Ki67 and increased immunostaining of endothelial and pericyte markers were observed in xenografts after only 6 days of exposure to prexasertib, potentially indicating a swift reduction in tumor volume and/or a direct effect on tumor vasculature. Conclusions: Overall, these data demonstrate that prexasertib is a specific inhibitor of CHK1 in neuroblastoma and leads to DNA damage and cell death in preclinical models of this devastating pediatric malignancy. Clin Cancer Res; 23(15); 4354–63. ©2017 AACR.


Cancer Research | 2016

Stromal-Based Signatures for the Classification of Gastric Cancer

Mark T. Uhlik; Jiangang Liu; Beverly L. Falcon; Seema Iyer; Julie Stewart; Hilal Celikkaya; Marguerita O'Mahony; Christopher Sevinsky; Christina Lowes; Larry E. Douglass; Cynthia Jeffries; Diane M. Bodenmiller; Sudhakar Chintharlapalli; Anthony S. Fischl; Damien Gerald; Qi Xue; Jee-yun Lee; Alberto Santamaria-Pang; Yousef Al-Kofahi; Yunxia Sui; Keyur Desai; Thompson N. Doman; Amit Aggarwal; Julia H. Carter; Bronislaw Pytowski; Shou-Ching Jaminet; Fiona Ginty; Aejaz Nasir; Janice A. Nagy; Harold F. Dvorak

Treatment of metastatic gastric cancer typically involves chemotherapy and monoclonal antibodies targeting HER2 (ERBB2) and VEGFR2 (KDR). However, reliable methods to identify patients who would benefit most from a combination of treatment modalities targeting the tumor stroma, including new immunotherapy approaches, are still lacking. Therefore, we integrated a mouse model of stromal activation and gastric cancer genomic information to identify gene expression signatures that may inform treatment strategies. We generated a mouse model in which VEGF-A is expressed via adenovirus, enabling a stromal response marked by immune infiltration and angiogenesis at the injection site, and identified distinct stromal gene expression signatures. With these data, we designed multiplexed IHC assays that were applied to human primary gastric tumors and classified each tumor to a dominant stromal phenotype representative of the vascular and immune diversity found in gastric cancer. We also refined the stromal gene signatures and explored their relation to the dominant patient phenotypes identified by recent large-scale studies of gastric cancer genomics (The Cancer Genome Atlas and Asian Cancer Research Group), revealing four distinct stromal phenotypes. Collectively, these findings suggest that a genomics-based systems approach focused on the tumor stroma can be used to discover putative predictive biomarkers of treatment response, especially to antiangiogenesis agents and immunotherapy, thus offering an opportunity to improve patient stratification. Cancer Res; 76(9); 2573-86. ©2016 AACR.


Journal of Hematology & Oncology | 2013

Development and characterization of a high-throughput in vitro cord formation model insensitive to VEGF inhibition

Beverly L. Falcon; Belinda O’Clair; Don B. McClure; Glenn F. Evans; Julie Stewart; Michelle Swearingen; Yuefeng Chen; Kevin Allard; Linda N. Lee; Kuldeep Neote; Dyke P. McEwen; Mark T. Uhlik; Sudhakar Chintharlapalli

BackgroundAnti-VEGF therapy reduces tumor blood vessels, however, some vessels always remain. These VEGF insensitive vessels may help support continued tumor growth and metastases. Many in vitro assays examining multiple steps of the angiogenic process have been described, but the majority of these assays are sensitive to VEGF inhibition. There has been little focus on the development of high-throughput, in vitro assays to model the vessels that are insensitive to VEGF inhibition.MethodsHere, we describe a fixed end-point and kinetic, high-throughput stem cell co-culture model of cord formation.ResultsIn this system, cords develop within 24 hours, at which point they begin to lose sensitivity to VEGF inhibitors, bevacizumab, and ramucirumab. Consistent with the hypothesis that other angiogenic factors maintain VEGF-independent vessels, pharmacologic intervention with a broad spectrum anti-angiogenic antagonist (suramin), a vascular disrupting agent (combretastatin), or a combination of VEGF and Notch pathway inhibitors reduced the established networks. In addition, we used our in vitro approach to develop an in vivo co-implant vasculogenesis model that connects with the endogenous vasculature to form functional blood vessels. Similar to the in vitro system, over time these vessels become insensitive to VEGF inhibition.ConclusionTogether, these models may be used to identify novel drugs targeting tumor vessels that are not sensitive to VEGF inhibition.


Oncotarget | 2018

Merestinib (LY2801653) inhibits neurotrophic receptor kinase (NTRK) and suppresses growth of NTRK fusion bearing tumors

Bruce W. Konicek; Andrew Capen; Kelly M. Credille; Philip J. Ebert; Beverly L. Falcon; Gary L. Heady; Bharvin Patel; Victoria L. Peek; Jennifer R. Stephens; Julie Stewart; Stephanie L. Stout; David E. Timm; Suzane L. Um; Melinda D. Willard; Isabella H. Wulur; Yi Zeng; Yong Wang; Richard A. Walgren; Sau-Chi Betty Yan

Merestinib is an oral multi-kinase inhibitor targeting a limited number of oncokinases including MET, AXL, RON and MKNK1/2. Here, we report that merestinib inhibits neurotrophic receptor tyrosine kinases NTRK1/2/3 which are oncogenic drivers in tumors bearing NTRK fusion resulting from chromosomal rearrangements. Merestinib is shown to be a type II NTRK1 kinase inhibitor as determined by x-ray crystallography. In KM-12 cells harboring TPM3-NTRK1 fusion, merestinib exhibits potent p-NTRK1 inhibition in vitro by western blot and elicits an anti-proliferative response in two- and three-dimensional growth. Merestinib treatment demonstrated profound tumor growth inhibition in in vivo cancer models harboring either a TPM3-NTRK1 or an ETV6-NTRK3 gene fusion. To recapitulate resistance observed from type I NTRK kinase inhibitors entrectinib and larotrectinib, we generated NIH-3T3 cells exogenously expressing TPM3-NTRK1 wild-type, or acquired mutations G595R and G667C in vitro and in vivo. Merestinib blocks tumor growth of both wild-type and mutant G667C TPM3-NTRK1 expressing NIH-3T3 cell-derived tumors. These preclinical data support the clinical evaluation of merestinib, a type II NTRK kinase inhibitor (NCT02920996), both in treatment naïve patients and in patients progressed on type I NTRK kinase inhibitors with acquired secondary G667C mutation in NTRK fusion bearing tumors.


PLOS ONE | 2014

A method to assess target gene involvement in angiogenesis in vitro and in vivo using lentiviral vectors expressing shRNA.

Wayne Blosser; Eliza Vakana; Lisa Wyss; Michelle Swearingen; Julie Stewart; Louis Stancato; Courtney M. Tate

Current methods to study angiogenesis in cancer growth and development can be difficult and costly, requiring extensive use of in vivo methodologies. Here, we utilized an in vitro adipocyte derived stem cell and endothelial colony forming cell (ADSC/ECFC) co-culture system to investigate the effect of lentiviral-driven shRNA knockdown of target genes compared to a non-targeting shRNA control on cord formation using High Content Imaging. Cord formation was significantly reduced following knockdown of the VEGF receptor VEGFR2 in VEGF-driven cord formation and the FGF receptor FGFR1 in basic FGF (bFGF)-driven cord formation. In addition, cord formation was signifcantly reduced following knockdown of the transcription factor forkhead box protein O1 (FOXO1), a protein with known positive effects on angiogenesis and blood vessel stabilization in VEGF- and bFGF-driven cord formation. Lentiviral shRNA also demonstrated utility for stable knockdown of VEGFR2 and FOXO1 in ECFCs, allowing for interrogation of protein knockdown effects on in vivo neoangiogenesis in a Matrigel plug assay. In addition to interrogating the effect of gene knockdown in endothelial cells, we utilized lentiviral shRNA to knockdown specificity protein 1 (SP1), a transcription factor involved in the expression of VEGF, in U-87 MG tumor cells to demonstrate the ability to analyze angiogenesis in vitro in a tumor-driven transwell cord formation system and in tumor angiogenesis in vivo. A significant reduction in tumor-driven cord formation, VEGF secretion, and in vivo tumor angiogenesis was observed upon SP1 knockdown. Therefore, evaluation of target gene knockdown effects in the in vitro co-culture cord formation assay in the ADSC/ECFC co-culture, ECFCs alone, and in tumor cells translated directly to in vivo results, indicating the in vitro method as a robust, cost-effective and efficient in vitro surrogate assay to investigate target gene involvement in endothelial or tumor cell function in angiogenesis.


Cancer Research | 2016

Abstract 2458: Targeting checkpoint kinase 1 (CHK1) with the small molecule inhibitor LY2606368 mesylate monohydrate in models of high-risk pediatric cancer yields significant antitumor effects

Caitlin D. May; Richard P. Beckmann; Wayne Blosser; Michele Dowless; Alle VanWye; Teresa F. Burke; Gerard Joseph Oakley; Jennifer R. Stephens; Julie Stewart; Beverly L. Falcon; Louis Stancato

CHK1 is a serine/threonine protein kinase essential for S-phase and G2/M cell cycle checkpoint regulation following DNA damage. Targeted inhibition of CHK1 in several tumor types increases DNA damage and replication stress, culminating in cell death through mitotic catastrophe. Recent studies have identified CHK1 as a therapeutic target in several pediatric tumor types. We evaluated the antitumor efficacy of LY2606368 mesylate monohydrate (“LY”), a checkpoint kinase 1 (CHK1)/CHK2 inhibitor currently in early phase clinical trials for adult solid cancers, in a panel of pediatric tumor cell lines and mouse models of embryonal tumors and pediatric sarcoma. In vitro effects of LY were assessed via Cell Titer Glo, immunoblotting, and cell cycle analysis by flow cytometry. For in vivo studies, mice bearing cell-derived (CDX) or patient-derived xenografts (PDX) of several pediatric tumor types were treated with four weekly cycles of 10 mg/kg LY BID for 3 consecutive days, followed by a 4 day dosing holiday. Tumor volume and body weight were measured 2x weekly. Xenograft tumor health following LY, chemotherapy, or combination treatment was evaluated by fluorescent immunohistochemistry (IHC) for a panel of markers for cell proliferation (Ki67), apoptosis (TUNEL), and angiogenesis (CD31, smooth muscle actin [SMA], MECA32). Single digit nanomolar sensitivity to LY was observed in the majority of pediatric cancer cell lines evaluated in vitro. A more detailed analysis of LY-treated neuroblastoma and pediatric sarcoma cell lines showed increased DNA damage, CHK1 phosphorylation, and MAPK pathway activation. Significant single agent LY activity was observed in mouse models of neuroblastoma and pediatric sarcoma, but not in models of hepatoblastoma or retinoblastoma. Acquired resistance to LY was observed in the ST162 and SJCRH30 models of alveolar rhabdomyosarcoma. Interestingly, more stroma was observed following LY single agent treatment as measured by CD31, SMA, and MECA32 IHC staining; co-treatment with chemotherapy reduced the amount of SMA expressing-cells. Overall, our data demonstrate that LY is highly effective as a single agent in murine in vivo models of human neuroblastoma and several pediatric sarcoma subtypes. Current studies include further evaluation of the LY mechanism of action; investigation into the mechanism of intrinsic and acquired resistance; and identification of possible biomarkers for LY sensitivity. Citation Format: Caitlin D. May, Richard Beckmann, Wayne Blosser, Michele Dowless, Alle VanWye, Teresa Burke, Gerard Oakley, Jennifer Stephens, Julie Stewart, Beverly Falcon, Louis Stancato. Targeting checkpoint kinase 1 (CHK1) with the small molecule inhibitor LY2606368 mesylate monohydrate in models of high-risk pediatric cancer yields significant antitumor effects. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2458.


Clinical Cancer Research | 2018

Abemaciclib is Active in Preclinical Models of Ewing's Sarcoma via Multi-pronged Regulation of Cell Cycle, DNA Methylation, and Interferon Pathway Signaling

Michele Dowless; Caitlin D. Lowery; Terry J Shackleford; Matthew Renschler; Jennifer R. Stephens; Robert Flack; Wayne Blosser; Simone Gupta; Julie Stewart; Yue Webster; Jack Dempsey; Alle VanWye; Philip J. Ebert; Philip W. Iversen; Jonathan B. Olsen; Xueqian Gong; Sean Buchanan; Peter J. Houghton; Louis Stancato

Purpose: Ewing sarcoma (ES) is a rare and highly malignant cancer that occurs in the bone and surrounding tissue of children and adolescents. The EWS/ETS fusion transcription factor that drives ES pathobiology was previously demonstrated to modulate cyclin D1 expression. In this study, we evaluated abemaciclib, a small-molecule CDK4 and CDK6 (CDK4 and 6) inhibitor currently under clinical investigation in pediatric solid tumors, in preclinical models of ES. Experimental Design: Using Western blot, high-content imaging, flow cytometry, ELISA, RNA sequencing, and CpG methylation assays, we characterized the in vitro response of ES cell lines to abemaciclib. We then evaluated abemaciclib in vivo in cell line–derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models of ES as either a monotherapy or in combination with chemotherapy. Results: Abemaciclib induced quiescence in ES cell lines via a G1 cell-cycle block, characterized by decreased proliferation and reduction of Ki-67 and FOXM1 expression and retinoblastoma protein (RB) phosphorylation. In addition, abemaciclib reduced DNMT1 expression and promoted an inflammatory immune response as measured by cytokine secretion, antigen presentation, and interferon pathway upregulation. Single-agent abemaciclib reduced ES tumor volume in preclinical mouse models and, when given in combination with doxorubicin or temozolomide plus irinotecan, durable disease control was observed. Conclusions: Collectively, our data demonstrate that the antitumor effects of abemaciclib in preclinical ES models are multifaceted and include cell-cycle inhibition, DNA demethylation, and immunogenic changes.

Collaboration


Dive into the Julie Stewart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge