Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne J. Korzan is active.

Publication


Featured researches published by Wayne J. Korzan.


Neuroscience & Biobehavioral Reviews | 2007

Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates.

Øyvind Øverli; Christina Sørensen; Kim G.T. Pulman; Tom G. Pottinger; Wayne J. Korzan; Cliff H. Summers; Göran E. Nilsson

Reactions to stress vary between individuals, and physiological and behavioral responses tend to be associated in distinct suites of correlated traits, often termed stress-coping styles. In mammals, individuals exhibiting divergent stress-coping styles also appear to exhibit intrinsic differences in cognitive processing. A connection between physiology, behavior, and cognition was also recently demonstrated in strains of rainbow trout (Oncorhynchus mykiss) selected for consistently high or low cortisol responses to stress. The low-responsive (LR) strain display longer retention of a conditioned response, and tend to show proactive behaviors such as enhanced aggression, social dominance, and rapid resumption of feed intake after stress. Differences in brain monoamine neurochemistry have also been reported in these lines. In comparative studies, experiments with the lizard Anolis carolinensis reveal connections between monoaminergic activity in limbic structures, proactive behavior in novel environments, and the establishment of social status via agonistic behavior. Together these observations suggest that within-species diversity of physiological, behavioral and cognitive correlates of stress responsiveness is maintained by natural selection throughout the vertebrate sub-phylum.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Detection and avoidance of a carnivore odor by prey

David M. Ferrero; Jamie K. Lemon; Daniela Fluegge; Stan L. Pashkovski; Wayne J. Korzan; Sandeep Robert Datta; Marc Spehr; Markus Fendt; Stephen D. Liberles

Predator–prey relationships provide a classic paradigm for the study of innate animal behavior. Odors from carnivores elicit stereotyped fear and avoidance responses in rodents, although sensory mechanisms involved are largely unknown. Here, we identified a chemical produced by predators that activates a mouse olfactory receptor and produces an innate behavioral response. We purified this predator cue from bobcat urine and identified it to be a biogenic amine, 2-phenylethylamine. Quantitative HPLC analysis across 38 mammalian species indicates enriched 2-phenylethylamine production by numerous carnivores, with some producing >3,000-fold more than herbivores examined. Calcium imaging of neuronal responses in mouse olfactory tissue slices identified dispersed carnivore odor-selective sensory neurons that also responded to 2-phenylethylamine. Two prey species, rat and mouse, avoid a 2-phenylethylamine odor source, and loss-of-function studies involving enzymatic depletion of 2-phenylethylamine from a carnivore odor indicate it to be required for full avoidance behavior. Thus, rodent olfactory sensory neurons and chemosensory receptors have the capacity for recognizing interspecies odors. One such cue, carnivore-derived 2-phenylethylamine, is a key component of a predator odor blend that triggers hard-wired aversion circuits in the rodent brain. These data show how a single, volatile chemical detected in the environment can drive an elaborate danger-associated behavioral response in mammals.


Hormones and Behavior | 2004

Stress coping style predicts aggression and social dominance in rainbow trout

Øyvind Øverli; Wayne J. Korzan; Erik Höglund; Svante Winberg; Herbert Bollig; Michael J. Watt; Gina L. Forster; Bruce A. Barton; Elisabeth Øverli; Kenneth J. Renner; Cliff H. Summers

Social stress is frequently used as a model for studying the neuroendocrine mechanisms underlying stress-induced behavioral inhibition, depression, and fear conditioning. It has previously been shown that social subordination may result in increased glucocorticoid release and changes in brain signaling systems. However, it is still an open question which neuroendocrine and behavioral differences are causes, and which are consequences of social status. Using juvenile rainbow trout of similar size and with no apparent differences in social history, we demonstrate that the ability to win fights for social dominance can be predicted from the duration of a behavioral response to stress, in this case appetite inhibition after transfer to a new environment. Moreover, stress responsiveness in terms of confinement-induced changes in plasma cortisol was negatively correlated to aggressive behavior. Fish that exhibited lower cortisol responses to a standardized confinement test were markedly more aggressive when being placed in a dominant social position later in the study. These findings support the view that distinct behavioral-physiological stress coping styles are present in teleost fish, and these coping characteristics influence both social rank and levels of aggression.


Hormones and Behavior | 2004

Behavioral and neuroendocrine correlates of displaced aggression in trout

Øyvind Øverli; Wayne J. Korzan; Earl T. Larson; Svante Winberg; Olivier Lepage; Tom G. Pottinger; Kenneth J. Renner; Cliff H. Summers

In humans and other primates, violent actions performed by victims of aggression are often directed toward an individual or object that is not the source of provocation. This psychological phenomenon is often called displaced aggression. We demonstrate that displaced aggression is either rooted in evolutionarily conserved behavioral and neuroendocrine mechanisms, or represent a convergent pattern that has arisen independently in fish and mammals. Rainbow trout that briefly encountered large, aggressive fish reacted with increased aggression toward smaller individuals. There was a strong negative correlation between received aggression and behavioral change: Individuals subjected to intense aggression were subdued, while moderate assaults induced strong agitation. Patterns of forebrain serotonin turnover and plasma cortisol suggest that the presence of socially subordinate fish had an inhibitory effect on neuroendocrine stress responses. Thus, subordinate individuals may serve as stress-reducing means of aggressive outlet, and displaced aggression toward such individuals appears to be a behavioral stress coping strategy in fishes.


Physiological and Biochemical Zoology | 2005

Does Serotonin Influence Aggression? Comparing Regional Activity before and during Social Interaction*

Cliff H. Summers; Wayne J. Korzan; Jodi L. Lukkes; Michael J. Watt; Gina L. Forster; Øyvind Øverli; Erik Höglund; Earl T. Larson; Patrick J. Ronan; John M. Matter; Tangi R. Summers; Kenneth J. Renner; Neil Greenberg

Serotonin is widely believed to exert inhibitory control over aggressive behavior and intent. In addition, a number of studies of fish, reptiles, and mammals, including the lizard Anolis carolinensis, have demonstrated that serotonergic activity is stimulated by aggressive social interaction in both dominant and subordinate males. As serotonergic activity does not appear to inhibit agonistic behavior during combative social interaction, we investigated the possibility that the negative correlation between serotonergic activity and aggression exists before aggressive behavior begins. To do this, putatively dominant and more aggressive males were determined by their speed overcoming stress (latency to feeding after capture) and their celerity to court females. Serotonergic activities before aggression are differentiated by social rank in a region‐specific manner. Among aggressive males baseline serotonergic activity is lower in the septum, nucleus accumbens, striatum, medial amygdala, anterior hypothalamus, raphe, and locus ceruleus but not in the hippocampus, lateral amygdala, preoptic area, substantia nigra, or ventral tegmental area. However, in regions such as the nucleus accumbens, where low serotonergic activity may help promote aggression, agonistic behavior also stimulates the greatest rise in serotonergic activity among the most aggressive males, most likely as a result of the stress associated with social interaction.


Current Biology | 2013

Synchronous evolution of an odor biosynthesis pathway and behavioral response.

Qian Li; Wayne J. Korzan; David M. Ferrero; Rui B. Chang; Dheeraj S. Roy; Mélanie Buchi; Jamie K. Lemon; Angeldeep W. Kaur; Lisa Stowers; Markus Fendt; Stephen D. Liberles

BACKGROUND Rodents use olfactory cues for species-specific behaviors. For example, mice emit odors to attract mates of the same species, but not competitors of closely related species. This implies rapid evolution of olfactory signaling, although odors and chemosensory receptors involved are unknown. RESULTS Here, we identify a mouse chemosignal, trimethylamine, and its olfactory receptor, trace amine-associated receptor 5 (TAAR5), to be involved in species-specific social communication. Abundant (>1,000-fold increased) and sex-dependent trimethylamine production arose de novo along the Mus lineage after divergence from Mus caroli. The two-step trimethylamine biosynthesis pathway involves synergy between commensal microflora and a sex-dependent liver enzyme, flavin-containing monooxygenase 3 (FMO3), which oxidizes trimethylamine. One key evolutionary alteration in this pathway is the recent acquisition in Mus of male-specific Fmo3 gene repression. Coincident with its evolving biosynthesis, trimethylamine evokes species-specific behaviors, attracting mice, but repelling rats. Attraction to trimethylamine is abolished in TAAR5 knockout mice, and furthermore, attraction to mouse scent is impaired by enzymatic depletion of trimethylamine or TAAR5 knockout. CONCLUSIONS TAAR5 is an evolutionarily conserved olfactory receptor required for a species-specific behavior. Synchronized changes in odor biosynthesis pathways and odor-evoked behaviors could ensure species-appropriate social interactions.


Neuroscience | 2006

Corticotropin-releasing factor in the dorsal raphe elicits temporally distinct serotonergic responses in the limbic system in relation to fear behavior

Gina L. Forster; Na Feng; Michael J. Watt; Wayne J. Korzan; Nicholas J. Mouw; Cliff H. Summers; Kenneth J. Renner

The neurotransmitters serotonin and corticotrophin-releasing factor are thought to play an important role in fear and anxiety behaviors. This study aimed to determine the relationship between corticotrophin-releasing factor-evoked changes in serotonin levels within discrete regions of the limbic system and the expression of fear behavior in rats. The effects of corticotrophin-releasing factor administration to the serotonin cell body regions of the dorsal raphe nucleus on fear behavior, behavioral activity, and extracellular serotonin levels were assessed in freely moving rats with microdialysis probes implanted into the central nucleus of the amygdala and the medial prefrontal cortex. Infusion of corticotrophin-releasing factor (0.5 microg) into the dorsal raphe rapidly induced freezing behavior, which was positively correlated with an immediate increase in serotonin release in the central nucleus of the amygdala. In contrast, cessation of freezing behavior correlated with a delayed and prolonged increase in serotonin release within the medial prefrontal cortex. Our findings suggest that corticotrophin-releasing factor-induced freezing behavior is associated with regionally and temporally distinct serotonergic responses in the limbic system that may reflect differing roles for these regions in the expression of fear/anxiety behavior.


Neuroscience | 2003

Temporal patterns of limbic monoamine and plasma corticosterone response during social stress

Cliff H. Summers; Tangi R. Summers; Michael C. Moore; Wayne J. Korzan; Sarah K. Woodley; Ronan Pj; Erik Höglund; Michael J. Watt; Neil Greenberg

Dominant and subordinate males respond differently to the stress of social interaction. After an hour of social interaction, subordinate male Anolis carolinensis have elevated serotonergic activity in hippocampus, but dominant males do not. In other species, and using other stressors, the activation of hippocampal serotonergic activity is much more rapid than one hour. To elucidate early stress responsiveness, adult male A. carolinensis were divided into four groups: isolated controls, and pairs of males sampled after 10, 20 or 40 minutes of aggressive interaction. Development of dominant-subordinate relationships was determined by behavior and by the celerity of eyespot darkening. Serotonergic activity in the hippocampus, nucleus accumbens and amygdala was elevated rapidly and equally in both dominant and subordinate males, as were plasma corticosterone concentrations. Serotonergic activity remained elevated through 40 minutes in hippocampus and nucleus accumbens. Only subordinate males had elevated corticosterone levels at 40 minutes. Social status does not impede socially induced stress responses. Rather, rapid regulation of serotonergic stress responses appears to be a mediating factor in determining both behavioral output and social status. Temporal expressions of monoaminergic and endocrine stress responses are distinctive between males of dominant and subordinate social status. Such temporal patterns of transmitter and glucocorticoid activity may reflect neurocircuitry adaptations that result in behavior modified to fit social status.


Brain Research | 2000

Monoaminergic activities of limbic regions are elevated during aggression: Influence of sympathetic social signaling

Wayne J. Korzan; Tangi R. Summers; Cliff H. Summers

A visual social signal inhibiting aggression is coincident with limiting serotonergic and noradrenergic activity in subiculum, hippocampus, nucleus accumbens, medial amygdala, but not lateral amygdala, septum, and hypothalamus. Darkening of postorbital skin in the lizard Anolis carolinensis is stimulated by sympathetic activation of beta(2)-adrenergic receptors via adrenal catecholamines, and occurs more rapidly in dominant males during social interaction. Eyespot darkening functions as a social signal limiting aggressive interaction. To assess the effect of this social signal on telencephalic activity of monoamines, males were painted postorbitally with green or black paint, and exposed to a mirror. Serotonergic and noradrenergic turnover, as estimated by ratios of catabolite to transmitter, were elevated in the subiculum, hippocampus, nucleus accumbens, and medial amygdala of animals in which the eyespots were masked by green paint. Conversely, dopaminergic activity in these brain regions was lower in males with hidden eyespots (painted green). Hiding the eyespot evoked significantly increased aggressive activity toward the mirror image. Furthermore, changes in monoaminergic turnover were coincident with altered aggressive behavior, suggesting a relationship between them. Changes of monoaminergic activity were not observed in the septum, lateral amygdala, or hypothalamus, when males with eyespots permanently marked (black) were compared with those with eyespots hidden (painted green). Stimulated (serotonergic and noradrenergic) or inhibited (dopaminergic) activity due to social signal and aggression are confined to regions of the brain similarly activated during social stress, and do not constitute a generalized activation of monoaminergic systems.


Hormones and Behavior | 2000

Visible sympathetic activity as a social signal in Anolis carolinensis: changes in aggression and plasma catecholamines

Wayne J. Korzan; Tangi R. Summers; Patrick J. Ronan; Cliff H. Summers

Darkening of postorbital skin in Anolis carolinensis occurs during stressful situations and is stimulated by sympathetic activation of beta(2)-adrenergic receptors via adrenal catecholamines. This eyespot forms more rapidly in dominant males during social interaction. Eyespot darkening (green to black) appears to function as a social signal communicating sympathetic activation and limiting aggressive interaction. To assess the value of the eyespot as a social signal, males were painted postorbitally with green, black, or red paint. Each male was exposed to a mirror following acclimation to the cage. The total number of aggressive displays toward the mirror image was greatest when eyespots were masked by green paint. In contrast, black or red artificial eyespots, regardless of size, inhibited biting behavior toward the mirror image. The most aggressive males, those who saw a reflected opponent with no eyespot (hidden with green paint), had significantly higher levels of all plasma catecholamines. These results suggest that A. carolinensis use information from the eyespot to assess their opponents readiness to fight and thereby determine whether to be aggressive. Darkened eyespots are capable of inhibiting aggression, whereas aggressive displays from an opponent in the mirror without darkened eyespots do not. Darkened eyespots reflect rapid changes in plasma NE, DA, and Epi that may signal dominant social status.

Collaboration


Dive into the Wayne J. Korzan's collaboration.

Top Co-Authors

Avatar

Cliff H. Summers

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Kenneth J. Renner

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Michael J. Watt

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Gina L. Forster

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Tangi R. Summers

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Øyvind Øverli

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Patrick J. Ronan

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Erik Höglund

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge