Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne Murrell is active.

Publication


Featured researches published by Wayne Murrell.


Developmental Dynamics | 2005

Multipotent stem cells from adult olfactory mucosa

Wayne Murrell; Francois Feron; Andrew Roberts Wetzig; Nicholas Cameron; Karisha Jade Splatt; Bernadette Bellette; John Bianco; Chris Perry; Gabriel Yin Foo Lee; Alan Mackay-Sim

Multipotent stem cells are thought to be responsible for the generation of new neurons in the adult brain. Neurogenesis also occurs in an accessible part of the nervous system, the olfactory mucosa. We show here that cells from human olfactory mucosa generate neurospheres that are multipotent in vitro and when transplanted into the chicken embryo. Cloned neurosphere cells show this multipotency. Multipotency was evident without prior culture in vitro: cells dissociated from adult rat olfactory mucosa generate leukocytes when transplanted into bone marrow–irradiated hosts, and cells dissociated from adult mouse olfactory epithelium generated numerous cell types when transplanted into the chicken embryo. It is unlikely that these results can be attributed to hematopoietic precursor contamination or cell fusion. These results demonstrate the existence of a multipotent stem‐like cell in the olfactory mucosa useful for autologous transplantation therapies and for cellular studies of disease. Developmental Dynamics 233:496–515, 2005.


Stem Cells | 2008

Olfactory Mucosa Is a Potential Source for Autologous Stem Cell Therapy for Parkinson's Disease

Wayne Murrell; Andrew Roberts Wetzig; Michael Donnellan; Francoise Feron; Thomas H. J. Burne; Adrian Cuda Banda Meedeniya; James P. Kesby; John Bianco; Chris Perry; Peter A. Silburn; Alan Mackay-Sim

Parkinsons disease is a complex disorder characterized by degeneration of dopaminergic neurons in the substantia nigra in the brain. Stem cell transplantation is aimed at replacing dopaminergic neurons because the most successful drug therapies affect these neurons and their synaptic targets. We show here that neural progenitors can be grown from the olfactory organ of humans, including those with Parkinsons disease. These neural progenitors proliferated and generated dopaminergic cells in vitro. They also generated dopaminergic cells when transplanted into the brain and reduced the behavioral asymmetry induced by ablation of the dopaminergic neurons in the rat model of Parkinsons disease. Our results indicate that Parkinsons patients could provide their own source of neuronal progenitors for cell transplantation therapies and for direct investigation of the biology and treatments of Parkinsons disease.


Disease Models & Mechanisms | 2010

Disease-specific, neurosphere-derived cells as models for brain disorders

Nicholas Matigian; Greger Abrahamsen; Ratneswary Sutharsan; Anthony L. Cook; Alejandra Mariel Vitale; Amanda Nouwens; Bernadette Bellette; Jiyuan An; Matthew J. Anderson; Anthony Gordon Beckhouse; Maikel Bennebroek; Rowena Cecil; Alistair Morgan Chalk; Julie Cochrane; Yongjun Fan; François Féron; Richard D. McCurdy; John J. McGrath; Wayne Murrell; Chris Perry; Jyothy Raju; Sugandha Ravishankar; Peter A. Silburn; Greg T. Sutherland; Stephen M. Mahler; George D. Mellick; Stephen A. Wood; Carolyn M. Sue; Christine A. Wells; Alan Mackay-Sim

SUMMARY There is a pressing need for patient-derived cell models of brain diseases that are relevant and robust enough to produce the large quantities of cells required for molecular and functional analyses. We describe here a new cell model based on patient-derived cells from the human olfactory mucosa, the organ of smell, which regenerates throughout life from neural stem cells. Olfactory mucosa biopsies were obtained from healthy controls and patients with either schizophrenia, a neurodevelopmental psychiatric disorder, or Parkinson’s disease, a neurodegenerative disease. Biopsies were dissociated and grown as neurospheres in defined medium. Neurosphere-derived cell lines were grown in serum-containing medium as adherent monolayers and stored frozen. By comparing 42 patient and control cell lines we demonstrated significant disease-specific alterations in gene expression, protein expression and cell function, including dysregulated neurodevelopmental pathways in schizophrenia and dysregulated mitochondrial function, oxidative stress and xenobiotic metabolism in Parkinson’s disease. The study has identified new candidate genes and cell pathways for future investigation. Fibroblasts from schizophrenia patients did not show these differences. Olfactory neurosphere-derived cells have many advantages over embryonic stem cells and induced pluripotent stem cells as models for brain diseases. They do not require genetic reprogramming and they can be obtained from adults with complex genetic diseases. They will be useful for understanding disease aetiology, for diagnostics and for drug discovery.


Neuroreport | 1996

Neurogenesis in adult human

Wayne Murrell; Gillian Robin Bushell; Jonathon Livesey; John J. McGrath; Kelli P. A. MacDonald; Paul Bates; Alan Mackay-Sim

THIS report describes neurogenesis in the adult human olfactory epithelium in vitro. Olfactory epithelium was collected at autopsy and by biopsy, and grown in serum-free medium. Basic fibroblast growth factor induced the differentiation of bipolar cells which were immunopositive for several neuronal proteins but not glial proteins. [3H]thymidine autoradiography confirmed that these neurones were born in vitro. The results demonstrate that the adult human olfactory epithelium retains the capacity for neurogenesis and neuronal differentiation, at least until the age of 72 years. It is now possible to examine neurones and neurogenesis in biopsies from patients with disorders that may involve a neurodevelopmental or neurodegenerative aetiology such as schizophrenia, bipolar disorder and Alzheimers disease.


The New England Journal of Medicine | 2010

Timing of De Novo Mutagenesis — A Twin Study of Sodium-Channel Mutations

Lata Vadlamudi; Leanne M. Dibbens; Kate M. Lawrence; Xenia Iona; Jacinta M. McMahon; Wayne Murrell; Alan Mackay-Sim; Ingrid E. Scheffer; Samuel F. Berkovic

De novo mutations are a cause of sporadic disease, but little is known about the developmental timing of such mutations. We studied concordant and discordant monozygous twins with de novo mutations in the sodium channel α1 subunit gene (SCN1A) causing Dravets syndrome, a severe epileptic encephalopathy. On the basis of our findings and the literature on mosaic cases, we conclude that de novo mutations in SCN1A may occur at any time, from the premorula stage of the embryo (causing disease in the subject) to adulthood (with mutations in the germ-line cells of parents causing disease in offspring).


Experimental Neurology | 2008

A novel cell transplantation protocol and its application to an ALS mouse model

Eri Morita; Yauhiro Watanabe; Miho Ishimoto; Toshiya Nakano; Michio Kitayama; Kenichi Yasui; Yasuyo Fukada; Koji Doi; Asanka Manjula Karunaratne; Wayne Murrell; Ratneswary Sutharsan; Alan Mackay-Sim; Yoshio Hata; Kenji Nakashima

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease, which selectively affects motor neurons throughout the central nervous system. The extensive distribution of motor neurons is an obstacle to applying cell transplantation therapy for the treatment of ALS. To overcome this problem, we developed a cell transplantation method via the fourth cerebral ventricle in mice. We used mouse olfactory ensheathing cells (OECs) and rat mesenchymal stem cells (MSCs) as donor cells. OECs are reported to promote regeneration and remyelination in the spinal cord, while MSCs have a capability to differentiate into several types of specific cells including neural cells. Furthermore both types of cells can be relatively easily obtained by biopsy in human. Initially, we confirmed the safety of the operative procedure and broad distribution of grafted cells in the spinal cord using wild-type mice. After transplantation, OECs distributed widely and survived as long as 100 days after transplantation, with a time-dependent depletion of cell number. In ALS model mice, OEC transplantation revealed no adverse effects but no significant differences in clinical evaluation were found between OEC-treated and non-transplanted animals. After MSC transplantation into the ALS model mice, females, but not males, showed a statistically longer disease duration than the non-transplanted controls. We conclude that intrathecal transplantation could be a promising way to deliver donor cells to the central nervous system. Further experiments to elucidate relevant conditions for optimal outcomes are required.


Journal of Neuroscience Research | 1996

FGF2 promotes neuronal differentiation in explant cultures of adult and embryonic mouse olfactory epithelium

Kelli P. A. MacDonald; Wayne Murrell; Perry F. Bartlett; Gr. Bushell; Alan Mackay-Sim

Neurogenesis in the adult olfactory epithelium is highly regulated in vivo. Little is known of the molecular signals which control this process, although contact with the olfactory bulb or with astrocytes has been implicated. Explants of mouse olfactory epithelium were grown in the presence or absence of several peptide growth factors. Basic fibroblast growth factor (FGF2) stimulated differentiation of sensory neurons in adult and embryonic olfactory epithelium. Other growth factors tested were ineffective. FGF2‐stimulated neurons were born in vitro and expressed neurofilament, neural cell adhesion molecule, and β‐tubulin. The cells also expressed olfactory marker protein, a marker for mature olfactory sensory neurons in vivo. These bipolar neurons did not express glial fibrillary acidic protein or low‐affinity nerve growth factor receptor. These results indicate that neither astrocytes nor olfactory bulb are necessary for differentiation of olfactory sensory neurons in vitro.


Experimental Cell Research | 2013

Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome

Cecilie Sandberg; Gabriel Altschuler; Jieun Jeong; Kirsten Kierulf Strømme; Biljana Stangeland; Wayne Murrell; Unn Hilde Grasmo-Wendler; Ola Myklebost; Eirik Helseth; Einar Osland Vik-Mo; Winston Hide; Iver A. Langmoen

Glioblastoma is the most common brain tumor. Median survival in unselected patients is <10 months. The tumor harbors stem-like cells that self-renew and propagate upon serial transplantation in mice, although the clinical relevance of these cells has not been well documented. We have performed the first genome-wide analysis that directly relates the gene expression profile of nine enriched populations of glioblastoma stem cells (GSCs) to five identically isolated and cultivated populations of stem cells from the normal adult human brain. Although the two cell types share common stem- and lineage-related markers, GSCs show a more heterogeneous gene expression. We identified a number of pathways that are dysregulated in GSCs. A subset of these pathways has previously been identified in leukemic stem cells, suggesting that cancer stem cells of different origin may have common features. Genes upregulated in GSCs were also highly expressed in embryonic and induced pluripotent stem cells. We found that canonical Wnt-signaling plays an important role in GSCs, but not in adult human neural stem cells. As well we identified a 30-gene signature highly overexpressed in GSCs. The expression of these signature genes correlates with clinical outcome and demonstrates the clinical relevance of GSCs.


The Spine Journal | 2009

Olfactory stem cells can be induced to express chondrogenic phenotype in a rat intervertebral disc injury model.

Wayne Murrell; Emma May Sanford; Leif Anderberg; Brenton Luke Cavanagh; Alan Mackay-Sim

BACKGROUND In humans, lower back pain is one of the most common causes of morbidity. Many studies implicate degeneration of intervertebral discs as the cause. In the normal intervertebral disc, the nucleus pulposus exerts a hydrostatic pressure against the constraining annulus fibrosus, which allows the disc to maintain flexibility between adjacent vertebrae, while absorbing necessary compressive forces. The nucleus pulposus performs this role because of its hydrophilic gel-like structure. The extracellular matrix of the nucleus pulposus is up to 80% hydrated, as a result of large amounts of the aggregating proteoglycan, chondroitin sulfate proteoglycan (CSPG). This proteoglycan is enmeshed in a randomly orientated network of fine collagen Type II (CT2) fibers. STUDY DESIGN AND PURPOSE: A useful adult tissue-derived stem cell is that from the olfactory mucosa, the organ of smell. These cells, accessible in humans from nasal biopsies, are multipotent and are able to make many cell types from all germ layers. They are easily grown in vitro and can be expanded to large numbers and stored frozen. These qualities indicate the potential for autologous transplantation for disc repair. In this article, using a rat model, we explore the hypothesis that olfactory stem cells can differentiate into a nucleus pulposus chondrocyte phenotype in vitro, as well as in vivo after transplantation into the injured intervertebral disc. PATIENT SAMPLE Female rats (14 weeks) were anesthetized with xylazine/ketamine. The abdominal wall was shaved and injected with local anesthetic (lidocaine) before incision. The ventral part of the lumbar spine, including two intervertebral discs, was exposed. Disc degeneration was then induced in the two exposed discs by needle aspiration of the nucleus pulposus. The prominent spina iliaca posterior superior was used as an anatomical landmark for identification of the first disc. Two weeks later, one injured intervertebral disc was exposed in a second, similar, surgery and 20,000 olfactory neurosphere-derived cells were transplanted with a 25-G needle. OUTCOME MEASURES In vitro induction of nucleus pulposus chondrocyte phenotype is measured by the percentage of cells expressing CT2 and CSPG. In vivo, a successful outcome is evidence of engraftment of donor-derived cells and their expression of CT2 and CSPG. METHODS In this article, we tested two hypotheses: the first that progenitor cells within olfactory neurospheres could be induced to express markers distinctive of the nucleus pulposus when placed in vitro in a coculture experiment. The second hypothesis tested the same induction in genetically labeled transplanted cells within damaged vertebral discs in vivo. The two markers measured are those held by current literature to engender the necessary cushioning characteristics of nucleus pulposus, CT2 and CSPG. RESULTS Our experiments demonstrated virtually 100% induction of these two markers in vitro. Also, this induction was achieved in donor-derived cells after delivery to the nucleus pulposus region of animals whose discs had previously been lesioned 2 weeks before transplant. CONCLUSIONS These results provide a rationale for moving toward more extensive larger animal studies for assessment of regeneration before human trials where relief of symptoms can be more easily assessed.


Developmental Dynamics | 2003

RhoA is highly up-regulated in the process of early heart development of the chick and important for normal embryogenesis

Mari Kaarbo; Denis I. Crane; Wayne Murrell

We have used molecular techniques, combined with classic embryological methods, to identify up‐regulated genes associated with early heart development. One of the cDNAs identified and isolated by screening a chick lambda cDNA library was the small guanosine triphosphatase RhoA. RhoA has at least three different length mRNA species, each varying in the length of the 3′ untranslated region. In situ hybridisation and immunocytochemistry analysis of RhoA expression show marked up‐regulation in the heart‐forming region. In other systems, RhoA signalling has been shown to be important for both gene expression and morphology. To investigate the function of RhoA in early heart development, we used small interfering RNAs (siRNA) in early chick embryos. Disruption of RhoA expression by siRNA treatment resulted in lack of heart tube fusion and abnormal head development. These data indicate that RhoA is important for normal embryogenesis. Developmental Dynamics 227:35–47, 2003.

Collaboration


Dive into the Wayne Murrell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zanina Grieg

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Chris Perry

Princess Alexandra Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge