Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wayne T. McCormack is active.

Publication


Featured researches published by Wayne T. McCormack.


The New England Journal of Medicine | 2010

Variant of TYR and Autoimmunity Susceptibility Loci in Generalized Vitiligo

Ying Jin; Stanca A. Birlea; Pamela R. Fain; Katherine Gowan; Sheri L. Riccardi; Paulene J. Holland; Christina M. Mailloux; Alexandra Sufit; Saunie M. Hutton; Anita Amadi-Myers; Dorothy C. Bennett; Margaret R. Wallace; Wayne T. McCormack; E. Helen Kemp; David J. Gawkrodger; Anthony P. Weetman; Mauro Picardo; Giovanni Leone; Alain Taïeb; Thomas Jouary; Khaled Ezzedine; Nanny van Geel; Jo Lambert; Andreas Overbeck; Richard A. Spritz

BACKGROUND Generalized vitiligo is an autoimmune disease characterized by melanocyte loss, which results in patchy depigmentation of skin and hair, and is associated with an elevated risk of other autoimmune diseases. METHODS To identify generalized vitiligo susceptibility loci, we conducted a genomewide association study. We genotyped 579,146 single-nucleotide polymorphisms (SNPs) in 1514 patients with generalized vitiligo who were of European-derived white (CEU) ancestry and compared the genotypes with publicly available control genotypes from 2813 CEU persons. We then tested 50 SNPs in two replication sets, one comprising 677 independent CEU patients and 1106 CEU controls and the other comprising 183 CEU simplex trios with generalized vitiligo and 332 CEU multiplex families. RESULTS We detected significant associations between generalized vitiligo and SNPs at several loci previously associated with other autoimmune diseases. These included genes encoding major-histocompatibility-complex class I molecules (P=9.05x10(-23)) and class II molecules (P=4.50x10(-34)), PTPN22 (P=1.31x10(-7)), LPP (P=1.01x10(-11)), IL2RA (P=2.78x10(-9)), UBASH3A (P=1.26x10(-9)), and C1QTNF6 (P=2.21x10(-16)). We also detected associations between generalized vitiligo and SNPs in two additional immune-related loci, RERE (P=7.07x10(-15)) and GZMB (P=3.44x10(-8)), and in a locus containing TYR (P=1.60x10(-18)), encoding tyrosinase. CONCLUSIONS We observed associations between generalized vitiligo and markers implicating multiple genes, some associated with other autoimmune diseases and one (TYR) that may mediate target-cell specificity and indicate a mutually exclusive relationship between susceptibility to vitiligo and susceptibility to melanoma.


Nature Genetics | 2012

Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo

Ying Jin; Stanca A. Birlea; Pamela R. Fain; Tracey M. Ferrara; Songtao Ben; Sheri L. Riccardi; Joanne B. Cole; Katherine Gowan; Paulene J. Holland; Dorothy C. Bennett; Rosalie M. Luiten; Albert Wolkerstorfer; J.P. Wietze van der Veen; Anke Hartmann; Saskia Eichner; Gerold Schuler; Nanja van Geel; Jo Lambert; E. Helen Kemp; David J. Gawkrodger; Anthony P. Weetman; Alain Taïeb; Thomas Jouary; Khaled Ezzedine; Margaret R. Wallace; Wayne T. McCormack; Mauro Picardo; Giovanni Leone; Andreas Overbeck; Nanette B. Silverberg

We previously reported a genome-wide association study (GWAS) identifying 14 susceptibility loci for generalized vitiligo. We report here a second GWAS (450 individuals with vitiligo (cases) and 3,182 controls), an independent replication study (1,440 cases and 1,316 controls) and a meta-analysis (3,187 cases and 6,723 controls) identifying 13 additional vitiligo-associated loci. These include OCA2-HERC2 (combined P = 3.80 × 10−8), MC1R (P = 1.82 × 10−13), a region near TYR (P = 1.57 × 10−13), IFIH1 (P = 4.91 × 10−15), CD80 (P = 3.78 × 10−10), CLNK (P = 1.56 × 10−8), BACH2 (P = 2.53 × 10−8), SLA (P = 1.58 × 10−8), CASP7 (P = 3.56 × 10−8), CD44 (P = 1.78 × 10−9), IKZF4 (P = 2.75 × 10−14), SH2B3 (P = 3.54 × 10−18) and TOB2 (P = 6.81 × 10−10). Most vitiligo susceptibility loci encode immunoregulatory proteins or melanocyte components that likely mediate immune targeting and the relationships among vitiligo, melanoma, and eye, skin and hair coloration.


Cell | 1989

Chicken IgL gene rearrangement involves deletion of a circular episome and addition of single nonrandom nucleotides to both coding segments

Wayne T. McCormack; Larry W. Tjoelker; Louise M. Carlson; Bronislawa Petryniak; Carolyn F. Barth; E H Humphries; Craig B. Thompson

Chicken immunoglobulin light chain (IgL) gene rearrangement has been characterized. Rearrangement of the single variable (VL) segment with the single joining (JL) segment within the chicken IgL locus results in the deletion of the DNA between VL and JL from the genome. This deletion is accomplished by a molecular mechanism in which a precise joining of the IgL recombination signal sequences leads to the formation of a circular episomal element. The circular episome is an unstable genetic element that fails to be propagated during B cell development. Evidence was obtained that the formation of the circular episome is accompanied by the addition of a single nonrandom base to both the VL and JL coding segments. The subsequent joining of the VL and JL segments appears to occur at random, as we observed at least 25 unique V-J junction sequences, 11 of which are out-of-frame. A novel recombination mechanism that accounts for the observed features of chicken IgL gene rearrangement is discussed.


Cell | 1991

Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion

Louise M. Carlson; Marjorie A. Oettinger; David G. Schatz; Emma L. Masteller; Elizabeth A. Hurley; Wayne T. McCormack; David Baltimore; Craig B. Thompson

Chickens create their immunoglobulin (Ig) repertoires during B cell development in the bursa of Fabricius by intrachromosomal gene conversion. Recent evidence has suggested that Ig gene conversion may involve cis-acting DNA elements related to those involved in V(D)J recombination. Therefore, we have examined the potential role of the V(D)J recombination activating genes, RAG-1 and RAG-2, in regulating chicken Ig gene conversion. In contrast to the coexpression of RAG-1 and RAG-2 observed in mammalian B cells that undergo V(D)J recombination, chicken B cells isolated from the bursa of Fabricius express high levels of the RAG-2 mRNA but do not express RAG-1 mRNA. The developmental and phenotypic characteristics of the bursal lymphocytes and chicken B cell lines that express RAG-2 mRNA demonstrate that selective RAG-2 expression occurs specifically in B cells undergoing Ig diversification by gene conversion. These data suggest that RAG-2 plays a fundamental role in Ig-specific gene conversion.


Nature Genetics | 2010

Common variants in FOXP1 are associated with generalized vitiligo

Ying Jin; Stanca A. Birlea; Pamela R. Fain; Christina M. Mailloux; Sheri L. Riccardi; Katherine Gowan; Paulene J. Holland; Dorothy C. Bennett; Margaret R. Wallace; Wayne T. McCormack; E. Helen Kemp; David J. Gawkrodger; Anthony P. Weetman; Mauro Picardo; Giovanni Leone; Alain Taïeb; Thomas Jouary; Khaled Ezzedine; Nanny van Geel; Jo Lambert; Andreas Overbeck; Richard A. Spritz

In a recent genome-wide association study of generalized vitiligo, we identified ten confirmed susceptibility loci. By testing additional loci that showed suggestive association in the genome-wide study, using two replication cohorts of European descent, we observed replicated association of generalized vitiligo with variants at 3p13 encompassing FOXP1 (rs17008723, combined P = 1.04 × 10−8) and with variants at 6q27 encompassing CCR6 (rs6902119, combined P = 3.94 × 10−7).


Journal of Investigative Dermatology | 2011

Comprehensive Association Analysis of Candidate Genes for Generalized Vitiligo Supports XBP1, FOXP3, and TSLP

Stanca A. Birlea; Ying Jin; Dorothy C. Bennett; Deborah M. Herbstman; Margaret R. Wallace; Wayne T. McCormack; E. Helen Kemp; David J. Gawkrodger; Anthony P. Weetman; Mauro Picardo; Giovanni Leone; Alain Taïeb; Thomas Jouary; Khaled Ezzedine; Nanja van Geel; Jo Lambert; Andreas Overbeck; Pamela R. Fain; Richard A. Spritz

We previously carried out a genome-wide association study of generalized vitiligo (GV) in non-Hispanic whites, identifying 13 confirmed susceptibility loci. In this study, we re-analyzed the genome-wide data set (comprising 1,392 cases and 2,629 controls) to specifically test association of all 33 GV candidate genes that have previously been suggested for GV, followed by meta-analysis incorporating both current and previously published data. We detected association of three of the candidate genes tested: TSLP (rs764916, P=3.0E-04, odds ratio (OR)=1.60; meta-P for rs3806933=3.1E-03), XBP1 (rs6005863, P=3.6E-04, OR=1.17; meta-P for rs2269577=9.5E-09), and FOXP3 (rs11798415, P=5.8E-04, OR=1.19). Association of GV with CTLA4 (rs12992492, P=5.9E-05, OR=1.20; meta-P for rs231775=1.0E-04) seems to be secondary to epidemiological association with other concomitant autoimmune diseases. Within the major histocompatibility complex (MHC), at 6p21.33, association with TAP1-PSMB8 (rs3819721, P=5.2E-06) seems to derive from linkage disequilibrium with major primary signals in the MHC class I and class II regions.


Genes and Immunity | 2003

Genes of the LMP/TAP cluster are associated with the human autoimmune disease vitiligo

Casp Cb; She Jx; Wayne T. McCormack

Genes within the class II region of the major histocompatibility complex (MHC), including genes involved in antigen processing and presentation, have been reported to be associated with several autoimmune diseases. We report here that the LMP/TAP gene region is significantly associated with vitiligo, a disorder in which biochemical defects and/or autoimmune destruction cause melanocyte loss and resulting skin depigmentation. Case/control analyses revealed genetic association of vitiligo in Caucasian patients with an early age of onset with the transporter associated with antigen processing-1 (TAP1) gene. A family-based association method revealed biased transmission of specific alleles from heterozygous parents to affected offspring for the TAP1 gene, as well as for the closely linked LMP2 and LMP7 genes encoding subunits of the immunoproteasome. No association with vitiligo was found for the MECL1 gene, which encodes a third immunoproteasome subunit and is unlinked to the MHC class II region. These results suggest a possible role for the MHC class I antigen processing and/or presentation pathway in the antimelanocyte autoimmune response involved in vitiligo pathogenesis.


Journal of Investigative Dermatology | 2011

Genome-Wide Analysis Identifies a Quantitative Trait Locus in the MHC Class II Region Associated with Generalized Vitiligo Age of Onset

Ying Jin; Stanca A. Birlea; Pamela R. Fain; Katherine Gowan; Sheri L. Riccardi; Paulene J. Holland; Dorothy C. Bennett; Deborah M. Herbstman; Margaret R. Wallace; Wayne T. McCormack; E. Helen Kemp; David J. Gawkrodger; Anthony P. Weetman; Mauro Picardo; Giovanni Leone; Alain Taïeb; Thomas Jouary; Khaled Ezzedine; Nanny van Geel; Jo Lambert; Andreas Overbeck; Richard A. Spritz

Generalized vitiligo is a common autoimmune disease in which acquired patchy depigmentation of skin, hair, and mucous membranes results from loss of melanocytes from involved areas. Previous genetic analyses have focused on vitiligo susceptibility, and have identified a number of genes involved in disease risk. Age of onset of generalized vitiligo also involves a substantial genetic component, but has not previously been studied systematically. In this study, we report a genome-wide association study of vitiligo age of onset in 1,339 generalized vitiligo patients, with replication in an independent cohort of 677 cases. We identified a quantitative trait locus for vitiligo age of onset in the major histocompatibility complex (MHC) class II region, located near c6orf10-BTNL2 (rs7758128; P=8.14 × 10(-11)), a region that is also associated with generalized vitiligo susceptibility. In contrast, there was no association of vitiligo age of onset with any other MHC or non-MHC loci that are associated with vitiligo susceptibility. These findings highlight the differing roles played by genes involved in vitiligo susceptibility versus vitiligo age of onset, and illustrate that genome-wide analyses can be used to identify genes involved in quantitative aspects of disease natural history, as well as disease susceptibility per se.


Advances in Immunology | 1990

Somatic diversification of the chicken immunoglobulin light-chain gene.

Wayne T. McCormack; Craig B. Thompson

The bursa of Fabricius provides a unique organ for the study of lineage-specific development in a multicellular organism. Unlike mammalian B cells, B cells in the chicken develop in a single wave of differentiation, beginning with the commitment of progenitor cells to the B cell lineage between days 10 and 15 of embryogenesis. By day 18 of embryogenesis, all lymphoid progenitor cells capable of differentiation along the B cell lineage have migrated to the bursa of Fabricius. Following migration to the bursa, these lymphoid progenitors enter exponential growth and begin to populate each of the 10(4) bursal follicles. Between day 18 of embryogenesis and 2-4 weeks of age, B cells undergo a stage of bursal-dependent differentiation. By the end of this period, chickens are able to mount primary immune responses against virtually all antigens. In addition, by this time sufficient numbers of B cells have migrated from the bursa to peripheral lymphoid organs so that the B cell immune system can be maintained even if the bird is bursectomized. Bursectomy of chicks after 4 weeks of age has no long-term effects on the development and maintenance of the B cell immune system in adult birds. Because of the central nature of the surface Ig molecule to B cell development in mammals, the chicken IgL gene locus has been intensively studied during avian B cell development. The chicken IgL locus is a particular interest because it has only one V region capable of rearrangement. Rearrangement of the IgL gene is not dependent on the bursal environment. B cell progenitors rearrange their IgL gene between days 10-15 of embryogenesis, prior to migration to the bursa. IgL gene rearrangement occurs by a deletional mechanism in which a precise joining of the IgL recombination signal sequences leads to a circular episomal element. During this deletion it appears that single nonrandom bases are added to both the V and J coding segments. Subsequent V-J joining occurs at random. Most progenitor B cells appear to rearrange only a single IgL allele. The high frequency of in-frame alleles observed in avian B cell lines appears to result from the selective amplification of cells with productive IgL rearrangements during bursal development between days 12 and 18 of embryogenesis. To create an immunological repertoire, chickens must diversify the coding sequence of this single functional V gene segment during development.(ABSTRACT TRUNCATED AT 400 WORDS)


Progress in Nucleic Acid Research and Molecular Biology | 1993

Immunoglobulin gene diversification by gene conversion.

Wayne T. McCormack; Larry W. Tjoelker; Craig B. Thompson

Publisher Summary This chapter discusses recent advances in the study of gene conversion, primarily in the chicken, and on current models for the molecular mechanism of this form of somatic gene conversion. Most of the higher vertebrates, including teleost fish, the amphibian Xenopus, the reptile Caiman, and most of the mammalian species studied, appear to rely on these combinatorial and junctional mechanisms to generate the primary antibody repertoire. Gene conversion in the chicken immunoglobulin light chain (IgL) locus has been shown to be restricted to the rearranged V gene segment, and does not occur in the leader region, the J gene segment, or within a germline IgL allele that has not undergone V-J joining. The chicken immunoglobulin heavy chain IgH and IgL loci are novel in that, they each contain only single V and J gene segments that are capable of undergoing V(D)J joining in B cell progenitors. In addition, V(D)J recombination in the chicken is not an ongoing development process. V(D)J joining is complete by day 18 of embryogenesis, and chicken progenitor B cells then migrate to a specialized lymphoid organ, the bursa of Fabricius, which is a posterior invagination of the cloaca of avian species. More recently, gene conversion has also been demonstrated to generate somatic immunoglobulin diversity in rabbit, a mammalian species well known for the diversity of its immune response. Although less is known about the mechanism of gene conversion than that of V(D)J joining, recent work has begun to shed some light on the molecular mechanisms involved in immunoglobulin gene conversion.

Collaboration


Dive into the Wayne T. McCormack's collaboration.

Top Co-Authors

Avatar

Craig B. Thompson

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanca A. Birlea

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Ying Jin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jo Lambert

Ghent University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge