Wee Han Ang
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wee Han Ang.
Advanced Drug Delivery Reviews | 2013
Bin Sheng Wong; Sia Lee Yoong; Anna Jagusiak; Tomasz Panczyk; Han Kiat Ho; Wee Han Ang; Giorgia Pastorin
In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs.
Journal of Medicinal Chemistry | 2008
Frédéric Schmitt; Padavattan Govindaswamy; Georg Süss-Fink; Wee Han Ang; Paul J. Dyson; Lucienne Juillerat-Jeanneret; Bruno Therrien
Five 5,10,15,20-tetra(4-pyridyl)porphyrin (TPP) areneruthenium(II) derivatives and a p-cymeneosmium and two pentamethylcyclopentadienyliridium and -rhodium analogues were prepared and characterized as potential photosensitizing chemotherapeutic agents. The biological effects of all these derivatives were assessed on human melanoma tumor cells, and their cellular uptake and intracellular localization were determined. All molecules, except the rhodium complex which was not cytotoxic, demonstrated comparable cytotoxicity in the absence of laser irradiation. The ruthenium complexes exhibited excellent phototoxicities toward melanoma cells when exposed to laser light at 652 nm. Cellular uptake and localization microscopy studies of [Ru 4(eta (6)-C 6H 5CH 3) 4(TPP)Cl 8] and [Rh 4(eta (5)-C 5Me 5) 4(TPP)Cl 8] revealed that they accumulated in the melanoma cell cytoplasm in granular structures different from lysosomes. The fluorescent porphyrin moiety and the metal component were localized in similar structures within the cells. Thus, the porphyrin areneruthenium(II) derivatives represent a promising new class of organometallic photosensitizers able to combine chemotherapeutic activity with photodynamic therapeutic treatment of cancer.
Nature Communications | 2014
Zenita Adhireksan; Gabriela E. Davey; Pablo Campomanes; Michael Groessl; Catherine M. Clavel; Haojie Yu; Alexey A. Nazarov; Charmian Hui Fang Yeo; Wee Han Ang; Peter Dröge; Ursula Rothlisberger; Paul J. Dyson; Curt A. Davey
Ruthenium compounds have become promising alternatives to platinum drugs by displaying specific activities against different cancers and favourable toxicity and clearance properties. Nonetheless, their molecular targeting and mechanism of action are poorly understood. Here we study two prototypical ruthenium-arene agents—the cytotoxic antiprimary tumour compound [(η6-p-cymene)Ru(ethylene-diamine)Cl]PF6 and the relatively non-cytotoxic antimetastasis compound [(η6-p-cymene)Ru(1,3,5-triaza-7-phosphaadamantane)Cl2]—and discover that the former targets the DNA of chromatin, while the latter preferentially forms adducts on the histone proteins. Using a novel ‘atom-to-cell’ approach, we establish the basis for the surprisingly site-selective adduct formation behaviour and distinct cellular impact of these two chemically similar anticancer agents, which suggests that the cytotoxic effects arise largely from DNA lesions, whereas the protein adducts may be linked to the other therapeutic activities. Our study shows promise for developing new ruthenium drugs, via ligand-based modulation of DNA versus protein binding and thus cytotoxic potential, to target distinguishing epigenetic features of cancer cells.
Journal of Medicinal Chemistry | 2012
Chee Fei Chin; Quan Tian; Magdiel Inggrid Setyawati; Wanru Fang; Emelyn Tan; David Tai Leong; Wee Han Ang
Platinum(II) anticancer drug cisplatin is one of the most important chemotherapeutic agents in clinical use but is limited by its high toxicity and severe side effects. Platinum(IV) anticancer prodrugs can overcome these limitations by resisting premature aquation and binding to essential plasma proteins. Structure-activity relationship studies revealed a link between the efficacy of platinum(IV) complexes with the nature of their axial ligands, which can be modified to enhance the properties of the prodrug. The existing paradigm of employing platinum(IV) complexes with symmetrical axial carboxylate ligands does not fully exploit their vast potential. A new approach was conceived to control properties of platinum(IV) prodrugs using contrasting axial ligands via sequential acylation. We report a novel class of asymmetric platinum(IV) carboxylates based on the cisplatin template containing both hydrophilic and lipophilic ligands on the same scaffold designed to improve their aqueous properties and enhance their efficacy against cancer cells in vitro.
Journal of Medicinal Chemistry | 2014
Mun Juinn Chow; Cynthia Licona; Daniel Yuan Qiang Wong; Giorgia Pastorin; Christian Gaiddon; Wee Han Ang
The structural diversity of metal scaffolds makes them a viable alternative to traditional organic scaffolds for drug design. Combinatorial chemistry and multicomponent reactions, coupled with high-throughput screening, are useful techniques in drug discovery, but they are rarely used in metal-based drug design. We report the optimization and validation of a new combinatorial, metal-based, three-component assembly reaction for the synthesis of a library of 442 Ru-arene Schiff-base (RAS) complexes. These RAS complexes were synthesized in a one-pot, on-a-plate format using commercially available starting materials under aqueous conditions. The library was screened for their anticancer activity, and several cytotoxic lead compounds were identified. In particular, [(η6-1,3,5-triisopropylbenzene)RuCl(4-methoxy-N-(2-quinolinylmethylene)aniline)]Cl (4) displayed low micromolar IC50 values in ovarian cancers (A2780, A2780cisR), breast cancer (MCF7), and colorectal cancer (HCT116, SW480). The absence of p53 activation or changes in IC50 value between p53+/+ and p53-/- cells suggests that 4 and possibly the other lead compounds may act independently of the p53 tumor suppressor gene frequently mutated in cancer.
Current Topics in Medicinal Chemistry | 2011
Chee Fei Chin; Daniel Yuan Qiang Wong; Ramasamy Jothibasu; Wee Han Ang
Over the past four decades, the search for improved platinum drugs based on the classical platinum (II)-diam(m)ine pharmacophore has yielded only a handful of successful candidates. New methodologies centred on platinum (IV) complexes, with better stability and expanded coordination spheres, offer the possibility of overcoming limitations inherent to platinum (II) drugs. In this review, novel strategies of targeting and killing cancer cells using platinum (IV) constructs are discussed. These approaches exploit the unique electrochemical characteristics and structural attributes of platinum (IV) complexes as a means of developing anticancer prodrugs that can target and selectively destroy cancer cells. Anticancer platinum (IV) prodrugs represent promising new strategies as targeted chemotherapeutic agents in the ongoing battle against cancer.
Biomaterials | 2014
Sia Lee Yoong; Bin Sheng Wong; Qi Ling Zhou; Chee Fei Chin; Jian Li; T. Venkatesan; Han Kiat Ho; Victor Yu; Wee Han Ang; Giorgia Pastorin
Among the arsenal of nano-materials, carbon nanotubes (CNTs) are becoming more prominent due to favorable attributes including their unique shape, which promotes cellular-uptake, and large aspect-ratio that facilitates functionalization of bioactive molecules on their surface. In this study, multi-walled carbon nanotubes (MWCNTs) were functionalized with either mitochondrial-targeting fluorescent rhodamine-110 (MWCNT-Rho) or non-targeting fluorescein (MWCNT-Fluo). Despite structural similarities, MWCNT-Rho associated well with mitochondria (ca. 80% co-localization) in contrast to MWCNT-Fluo, which was poorly localized (ca. 21% co-localization). Additionally, MWCNT-Rho entrapping platinum(IV) pro-drug of cisplatin (PtBz) displayed enhanced potency (IC50 = 0.34 ± 0.07 μM) compared to a construct based on MWCNT-Fluo (IC50 ≥ 2.64 μM). Concurrently, preliminary in vitro toxicity evaluation revealed that empty MWCNT-Rho neither decreased cell viability significantly nor interfered with mitochondrial membrane-potential, while seemingly being partially expelled from cells. Due to its targeting capability and apparent lack of cytotoxicity, MWCNT-Rho complex was used to co-encapsulate PtBz and a chemo-potentiator, 3-bromopyruvate (BP), and the resulting MWCNT-Rho(PtBz+BP) construct demonstrated superior efficacy over PtBz free drug in several cancer cell lines tested. Importantly, a 2-fold decrease in mitochondrial potential was observed, implying that mitochondrial targeting of compounds indeed incurred additional intended damage to mitochondria.
Chemistry: A European Journal | 2011
Lorien J. Parker; Louis C. Italiano; Craig J. Morton; Nancy C. Hancock; David B. Ascher; Jade B. Aitken; Hugh H. Harris; Pablo Campomanes; Ursula Rothlisberger; Anastasia De Luca; Mario Lo Bello; Wee Han Ang; Paul J. Dyson; Michael W. Parker
Platinum-based cancer drugs, such as cisplatin, are highly effective chemotherapeutic agents used extensively for the treatment of solid tumors. However, their effectiveness is limited by drug resistance, which, in some cancers, has been associated with an overexpression of pi class glutathione S-transferase (GST P1-1), an important enzyme in the mercapturic acid detoxification pathway. Ethacraplatin (EA-CPT), a trans-Pt(IV) carboxylate complex containing ethacrynate ligands, was designed as a platinum cancer metallodrug that could also target cytosolic GST enzymes. We previously reported that EA-CPT was an excellent inhibitor of GST activity in live mammalian cells compared to either cisplatin or ethacrynic acid. In order to understand the nature of the drug-protein interactions between EA-CPT and GST P1-1, and to obtain mechanistic insights at a molecular level, structural and biochemical investigations were carried out, supported by molecular modeling analysis using quantum mechanical/molecular mechanical methods. The results suggest that EA-CPT preferentially docks at the dimer interface at GST P1-1 and subsequent interaction with the enzyme resulted in docking of the ethacrynate ligands at both active sites (in the H-sites), with the Pt moiety remaining bound at the dimer interface. The activation of the inhibitor by its target enzyme and covalent binding accounts for the strong and irreversible inhibition of enzymatic activity by the platinum complex.
Chemical Science | 2012
Jian Li; Siew Qi Yap; Chee Fei Chin; Quan Tian; Sia Lee Yoong; Giorgia Pastorin; Wee Han Ang
Platinum-based anticancer drugs constitute some of most effective chemotherapeutic regimes, but they are limited by high toxicities and severe side-effects arising from premature aquation and non-specific interactions. Macromolecular delivery agents can be used to shield platinum drugs from adventitious binding and as a platform to attach targeting groups, as a strategy to mitigate some of these limitations. An approach was conceived to utilise carbon nanotubes as a protective shell for stable platinum(IV) prodrugs entrapped within its inner cavities. An inert and strongly hydrophobic platinum(IV) complex was designed for entrapment within multiwalled carbon nanotubes via hydrophobic–hydrophobic interactions. Upon chemical reduction, the drug was converted to its cytotoxic and hydrophilic form and released from the carrier, via a drastic reversal in hydrophobicity, for DNA-binding. This simple method of hydrophobic entrapment and controlled release by chemical reduction and hydrophobicity reversal, exploiting the Pt(IV) scaffold as a prodrug, could form the basis of other delivery strategies for targeted delivery of platinum drugs into cancer cells.
Angewandte Chemie | 2014
Daniel Yuan Qiang Wong; Charmian Hui Fang Yeo; Wee Han Ang
There is growing consensus that the clinical therapeutic efficacy of some chemotherapeutic agents depends on their off-target immune-modulating effects. Pt anticancer drugs have previously been identified to be potent immunomodulators of both the innate and the adaptive immune system. Nevertheless, there has been little development in the rational design of Pt-based chemotherapeutic agents to exploit their immune-activating capabilities. The FPR1/2 formyl peptide receptors are highly expressed in immune cells, as well as in many metastatic cancers. Herein, we report a rationally designed multimodal Pt(IV) prodrug containing a FPR1/2-targeting peptide that combines chemotherapy with immunotherapy to achieve therapeutic synergy and demonstrate the feasibility of this approach.