Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wei-Kan Chen.
Journal of Chemical Physics | 2009
Shih-Huang Lee; Wei-Kan Chen; Wen-Jian Huang
In a crossed molecular-beam apparatus, we reacted atomic O in states (3)P and (1)D with ethene (C(2)H(4)) at collision energy 3 kcal mol(-1). Employing two mixtures, 20% O(2) + 80% He and 3% O(2) + 12.5% Ar + 84.5% He, as discharge media allowed us to generate two sources of oxygen atoms that have the same mean velocity but different ratios of (1)D/(3)P populations, 0.0017 and 0.035. We identified six reactions and recorded time-of-flight spectra of products CH(2)CHO, CH(2)CO, and CH(3) as a function of laboratory angle. Reaction O((3)P) + C(2)H(4) --> CH(2)CHO + H has a fraction f(t) = 0.43 of energy release in translation, and product CH(2)CHO has a maximal probability at scattering angle of 140 degrees. For reaction O((1)D) + C(2)H(4) --> CH(2)CO + 2H, f(t) = 0.26, and the angular distribution of product CH(2)CO shows a backward preference. For reaction O((3)P) + C(2)H(4) --> CH(2)CO + H(2), f(t) = 0.35, and the angular distribution of product CH(2)CO has a slight preference for a sideways direction. In contrast, reaction O((1)D) + C(2)H(4) --> CH(2)CO + H(2) has f(t) = 0.26 and an angular distribution with forward and backward peaking and symmetry. Reactions O((3)P and (1)D) + C(2)H(4) --> CH(3) + HCO have f(t) = 0.09 and 0.08, respectively, and angular distributions with forward and backward peaking and nearly symmetric. The reactivity of O (1)D with ethene is ca. 38 and 90 times that of O (3)P for channels to eliminate H(2) and CH(3), respectively. For reactions of O (1)D, the branching ratio for elimination of 2H is ca. 3.3 times that for elimination of H(2).
Review of Scientific Instruments | 2007
I-Chung Lu; Wen-Jian Huang; Chanchal Chaudhuri; Wei-Kan Chen; Shih-Huang Lee
To investigate the reactions of oxygen atoms with ethene and silane in a crossed-beam condition, we developed a stable, highly intense, and short-pulsed source of atomic oxygen with a transient high-voltage discharge. Mixtures of O(2) and He served as discharge media. Utilizing a crossed molecular-beam apparatus and direct vacuum-ultraviolet ionization, we measured the temporal profiles of oxygen atoms and the time-of-flight spectra of reaction products. With O(2) 3% seeded in He as a discharge medium, oxygen atoms might have a full width as small as 13.5 micros at half maximum at a location 193 mm downstream from the discharge region. Most population of oxygen atoms is in the ground state (3)P but some in the first excited state (1)D, depending on the concentration of precursor O(2). This discharge device analogously generates carbon, nitrogen, and fluorine atoms from precursors CO, N(2), and F(2), respectively.
Physical Chemistry Chemical Physics | 2011
Shih-Huang Lee; Chih-Hao Chin; Wei-Kan Chen; Wen-Jian Huang; Chu-Chun Hsieh
We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C(2)H(3)N and C(2)H(2)N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N((2)D)+C(2)H(4) established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N((2)D) atom adds to the C=C π-bond of ethene (C(2)H(4)) to form a cyclic complex c-CH(2)(N)CH(2) that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C(2)H(3)N; c-CH(2)(N)CH+H is the dominant product channel. Subsequently, most C(2)H(3)N radicals, notably c-CH(2)(N)CH, further decompose to CH(2)CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.
Journal of Physical Chemistry A | 2012
Chih-Hao Chin; Wei-Kan Chen; Wen-Jian Huang; Yi-Cheng Lin; Shih-Huang Lee
We investigated the title reaction at collision energy 3.5 kcal mol(-1) in a crossed molecular beam apparatus using undulator radiation as an ionization source. Time-of-flight (TOF) spectra of product C(3)H(3) were measured in laboratory angles from 20° to 100° using two photoionization energies 9.5 and 11.6 eV. These two sets of experimental data exhibit almost the same TOF distributions and laboratory angular distributions. From the best simulation, seven angle-specific kinetic-energy distributions and a nearly isotropic angular distribution are derived for product channel C(3)H(3) + H that has an average kinetic-energy release of 15.5 kcal mol(-1), corresponding to an average internal energy of 33.3 kcal mol(-1) in C(3)H(3). Furthermore, TOF spectra of product C(3)H(3) were measured at laboratory angle 52° with ionizing photon energies from 7 to 12 eV. The appearance of TOF spectra remains almost the same, indicating that a species exclusively contributes to product C(3)H(3); the species is identified as H(2)CCCH (propargyl) based on the ionization energy of 8.6 ± 0.2 eV and the maximal kinetic-energy release of 49 kcal mol(-1). Theoretical calculations indicate that the rapid inversion mechanism and rotation in intermediate H(2)CCCH(2) can result in a forward-backward symmetric angular distribution for product C(3)H(3) + H. The present work avoids the interference of reactions of C((1)D) and C(2) radicals with C(2)H(4) and rules out the probability of production of other isomers like c-C(3)H(3) and H(3)CCC proposed in the previous work at least at the investigated collision energy.
Journal of Chemical Physics | 2006
Shih-Huang Lee; Wei-Kan Chen; Chanchal Chaudhuri; Wen-Jian Huang; Yuan T. Lee
Using photofragment translational spectroscopy and tunable vacuum-ultraviolet ionization, we measured the time-of-flight spectra of fragments upon photodissociation of vinyl fluoride (CH2CHF) at 157 and 193 nm. Four primary dissociation pathways--elimination of atomic F, atomic H, molecular HF, and molecular H2--are identified at 157 nm. Dissociation to C2H3 + F is first observed in the present work. Decomposition of internally hot C2H3 and C2H2F occurs spontaneously. The barrier heights of CH2CH --> CHCH + H and cis-CHCHF --> CHCH + F are evaluated to be 40+/-2 and 44+/-2 kcal mol(-1), respectively. The photoionization yield spectra indicate that the C2H3 and C2H2F radicals have ionization energies of 8.4+/-0.1 and 8.8+/-0.1 eV, respectively. Universal detection of photoproducts allowed us to determine the total branching ratios, distributions of kinetic energy, average kinetic energies, and fractions of translational energy release for all dissociation pathways of vinyl fluoride. In contrast, on optical excitation at 193 nm the C2H2 + HF channel dominates whereas the C2H3 + F channel is inactive. This reaction C2H3F --> C2H2 + HF occurs on the ground surface of potential energy after excitation at both wavelengths of 193 and 157 nm, indicating that internal conversion from the photoexcited state to the electronic ground state of vinyl fluoride is efficient. We computed the electronic energies of products and the ionization energies of fluorovinyl radicals.
Journal of Chemical Physics | 2013
Shih-Huang Lee; Wei-Kan Chen; Chih-Hao Chin; Wen-Jian Huang
Two product channels C3H2F + H and C3H3 + F were identified in the reaction of C((3)P) atoms with vinyl fluoride (C2H3F) at collision energy 3.7 kcal mol(-1) in a crossed molecular-beam apparatus using selective photoionization. Time-of-flight (TOF) spectra of products C3H2F and C3H3 were measured at 12-16 laboratory angles as well as a TOF spectrum of atomic F, a counter part of C3H3, was recorded at single laboratory angle. From the best simulation of product TOF spectra, translational-energy distributions at seven scattering angles and a nearly isotropic (forward and backward peaked) angular distribution were derivable for exit channel C3H2F + H (C3H3 + F) that has average kinetic-energy release of 14.5 (4.9) kcal mol(-1). Products C3H2F + H and C3H3 + F were estimated to have a branching ratio of ~53:47. Furthermore, TOF spectra and photoionization spectra of products C3H2F and C3H3 were measured at laboratory angle 62° with photoionization energy ranging from 7 eV to 11.6 eV. The appearance of TOF spectra is insensitive to photon energy, implying that only single species overwhelmingly contributes to products C3H2F and C3H3. HCCCHF (H2CCCH) was identified as the dominant species based on the measured ionization threshold of 8.3 ± 0.2 (8.6 ± 0.2) eV and the maximal translational-energy release. The C/H and C/F exchange mechanisms are stated.
Journal of Chemical Physics | 2008
I-Chung Lu; Wei-Kan Chen; Chanchal Chaudhuri; Wen-Jian Huang; Jim J. Lin; Shih-Huang Lee
We investigated the reaction N((4)S,(2)D,(2)P)+SiH(4) in crossed molecular beams at a collision energy of 4.7 kcal mol(-1) with a time-of-flight mass spectrometer and selective photoionization. Ion signals were observed at m/z=42-45, associated with two product channels, HSiNH/SiNH(2)+H+H and HSiN/HNSi+H(2)+H. The species producing the signal at m/z=43 is assigned to product HSiN/HNSi and that at m/z=44 to product HSiNH/SiNH(2). The signal observed at m/z=42 is attributed to daughter ions of those two products and that at m/z=45 to (29)Si and (30)Si isotopic variants. We report time-of-flight spectra as a function of laboratory angle and simulations for the two products, from which both kinetic-energy and angular distributions of products in the center-of-mass (c.m.) frame were derived. The dependence of release of kinetic energy on the c.m. scattering angle is weak. The average translational energy released is 7.7 kcal mol(-1) for product channel HSiNH/SiNH(2)+H+H and 30.3 kcal mol(-1) for product channel HSiN/HNSi+H(2)+H. Through consecutive triple fragmentation, the angular distribution is slightly anisotropic for product HSiNH/SiNH(2) but isotropic for product HSiN/HNSi. Assuming equal efficiencies of detection, we estimate the branching ratios of products HSiNH/SiNH(2) and HSiN/HNSi to be roughly 15:85. To facilitate an understanding of the reaction mechanisms, we calculated the potential-energy surface for reaction N((2)D)+SiH(4) with quantum-chemical methods. Reactions N((2)D)+SiH(4)-->SiNH(2)+H+H and N((2)D)+SiH(4)-->HNSi+H(2)+H account satisfactorily for the present experimental results. Isomeric products HSiNH and HSiN are minor in this work.
Journal of Chemical Physics | 2013
Shih-Huang Lee; Wei-Kan Chen; Chih-Hao Chin; Wen-Jian Huang
We investigated the dynamics of the reaction of (3)P atomic carbon with propene (C3H6) at reactant collision energy 3.8 kcal mol(-1) in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C4H5, C4H4, C3H3, and CH3 were observed and attributed to exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a (3)P carbon atom to the C=C bond of propene, cyclic complex c-H2C(C)CHCH3 undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H2CCCHCH3. Both the isomers of H2CCCHCH3 in turns decompose to C4H5 + H and C3H3 + CH3. A portion of C4H5 that has enough internal energy further decomposes to C4H4 + H. The three exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3 have average translational energy releases 13.5, 3.2, and 15.2 kcal mol(-1), respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH3-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of (3)P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.
Journal of Chemical Physics | 2013
Shih-Huang Lee; Wei-Kan Chen; Chih-Hao Chin; Wen-Jian Huang
The dynamics of the C((3)P) + C2H3Cl reaction at collision energy 3.8 kcal mol(-1) was investigated in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Time-of-flight spectra of products C3H2Cl, C3H3, and Cl were recorded at various laboratory scattering angles, from which translational-energy distributions and angular distributions of product channels C3H2Cl + H and C3H3 + Cl were derived. Cl correlates satisfactorily with C3H3 in linear momentum and angular distributions, which confirms the production of C3H3 + Cl. The H-loss (Cl-loss) channel has average translational-energy release 14.3 (8.8) kcal mol(-1) corresponding to a fraction 0.30 (0.14) of available energy into the translational degrees of freedom of product HCCCHCl + H (H2CCCH + Cl). The branching ratio of channel H to channel Cl was determined approximately as 12:88. The measurements of translational-energy releases and photoionization thresholds cannot distinguish HCCCHCl from H2CCCCl because both isomers have similar enthalpy of formation and ionization energy; nevertheless, the Rice-Ramsperger-Kassel-Marcus calculation prefers HCCCHCl. The measurement of photoionization spectra identifies product C3H3 as H2CCCH (propargyl). Both products C3H2Cl + H and C3H3 + Cl might correlate to the same triplet intermediate H2CCCHCl but have distinct angular distributions; the former is nearly isotropic whereas the latter is forward biased. A comparison with the C((3)P) + C2H3F reaction is stated.
Chemical Physics Letters | 2007
Shih-Huang Lee; Wen-Jian Huang; Wei-Kan Chen