Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wei-liang Ye is active.

Publication


Featured researches published by Wei-liang Ye.


PLOS ONE | 2014

Cellular uptake and antitumor activity of DOX-hyd-PEG-FA nanoparticles.

Wei-liang Ye; Jiang-bo Du; Bang-Le Zhang; Ren Na; Yan-feng Song; Qibing Mei; Ming-Gao Zhao; Si-Yuan Zhou

A PEG-based, folate mediated, active tumor targeting drug delivery system using DOX-hyd-PEG-FA nanoparticles (NPs) were prepared. DOX-hyd-PEG-FA NPs showed a significantly faster DOX release in pH 5.0 medium than in pH 7.4 medium. Compared with DOX-hyd-PEG NPs, DOX-hyd-PEG-FA NPs increased the intracellular accumulation of DOX and showed a DOX translocation from lysosomes to nucleus. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was much higher than that of free DOX, DOX-ami-PEG-FA NPs and DOX-hyd-PEG NPs. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was attenuated in the presence of exogenous folic acid. The IC50 of DOX-hyd-PEG-FA NPs and DOX-hyd-PEG NPs on A549 cells showed no significant difference. After DOX-hyd-PEG-FA NPs were intravenously administered, the amount of DOX distributed in tumor tissue was significantly increased, while the amount of DOX distributed in heart was greatly decreased as compared with free DOX. Compared with free DOX, NPs yielded improved survival rate, prolonged life span, delayed tumor growth and reduced the cardiotoxicity in tumor bearing mice model. These results indicated that the acid sensitivity, passive and active tumor targeting abilities were likely to act synergistically to enhance the drug delivery efficiency of DOX-hyd-PEG-FA NPs. Therefore, DOX-hyd-PEG-FA NPs are a promising drug delivery system for targeted cancer therapy.


PLOS ONE | 2015

Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells.

Yong Hua Lei; Hanjie Yu; Yu-Lin Dong; Jing-Yue Yang; Wei-liang Ye; Yu-Tong Wang; Wentian Chen; Zhansheng Jia; Zhuwei Xu; Zheng Li; Fu-Xing Zhang

DENV envelope glycoprotein (E) is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD) of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.


Journal of Pharmaceutical Sciences | 2013

Synthesis of a New pH-Sensitive Folate-Doxorubicin Conjugate and its Antitumor Activity In Vitro

Wei-liang Ye; Zenghui Teng; Dao-zhou Liu; Han Cui; Miao Liu; Ying Cheng; Tiehong Yang; Qibing Mei; Si-Yuan Zhou

Folate-aminocaproic acid-doxorubicin (FA-AMA-DOX) was synthesized and characterized by H NMR spectroscopy and mass spectrometry. Cytotoxicity and cellular uptake experiments were performed in KB and HepG2 cells, which express folic acid receptor, and the cell line A549, which does not express folic acid receptor. Cytotoxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and cellular uptake was monitored using fluorescence microscopy. The amount of DOX released from FA-AMA-DOX was much greater at pH 5.0 than that at pH 6.5 or 7.4. The cytotoxicity of FA-AMA-DOX toward KB and HepG2 cells was greater than that of DOX or AMA-DOX at the same concentrations, and cytotoxicity could be attenuated by FA in a dose-dependent manner. On the contrary, the cytotoxicity of FA-AMA-DOX and AMA-DOX toward A549 cells was lower than that of DOX at the same concentration, and cytotoxicity could not be reduced by FA. Compared with FA-AMA, FA-AMA-DOX increased the intracellular accumulation of DOX in KB cells. These results suggested that FA-AMA-DOX have suitable attributes for the active targeting of folate-receptor-positive tumor cells and for releasing the chemotherapeutic agent, DOX, in situ; it therefore has potential as a novel cancer therapeutic.


Scientific Reports | 2015

Dual subcellular compartment delivery of doxorubicin to overcome drug resistant and enhance antitumor activity

Yan-feng Song; Dao-zhou Liu; Ying Cheng; Miao Liu; Wei-liang Ye; Bang-Le Zhang; Xinyou Liu; Si-Yuan Zhou

In order to overcome drug resistant and enhance antitumor activity of DOX, a new pH-sensitive micelle (DOX/DQA-DOX@DSPE-hyd-PEG-AA) was prepared to simultaneously deliver DOX to nucleus and mitochondria. Drug released from DOX/DQA-DOX@DSPE-hyd-PEG-AA showed a pH-dependent manner. DOX/DQA-DOX@DSPE-hyd-PEG-AA induced the depolarization of mitochondria and apoptosis in MDA-MB-231/ADR cells and A549 cells, which resulted in the high cytotoxicity of DOX/DQA-DOX@DSPE-hyd-PEG-AA against MDA-MB-231/ADR cells and A549 cells. Confocal microscopy confirmed that DOX/DQA-DOX@DSPE-hyd-PEG-AA simultaneously delivered DQA-DOX and DOX to the mitochondria and nucleus of tumor cell. After DOX/DQA-DOX@DSPE-hyd-PEG-AA was injected to the tumor-bearing nude mice by the tail vein, DOX was mainly found in tumor tissue. But DOX was widely distributed in the whole body after the administration of free DOX. Compared with free DOX, the same dose of DOX/DQA-DOX@DSPE-hyd-PEG-AA significantly inhibited the growth of DOX-resistant tumor in tumor-bearing mice without obvious systemic toxicity. Therefore, dual subcellular compartment delivery of DOX greatly enhanced the antitumor activity of DOX on DOX-resistant tumor. DOX/DQA-DOX@DSPE-hyd-PEG-AA has the potential in target therapy for DOX-resistant tumor.


Molecular Pharmaceutics | 2014

Synthesis of doxorubicin α-linolenic acid conjugate and evaluation of its antitumor activity.

Chun-hui Liang; Wei-liang Ye; Chun-lai Zhu; Ren Na; Ying Cheng; Han Cui; Dao-zhou Liu; Zhi-fu Yang; Si-Yuan Zhou

Doxorubicin (DOX) is a broad-spectrum antitumor drug used in the clinic. However, it can cause serious heart toxicity. To increase the therapeutic index of DOX and to attenuate its toxicity toward normal tissues, we conjugated DOX with either α-linolenic acid (LNA) or palmitic acid (PA) by a hydrazone or an amide bond to produce DOX-hyd-LNA, DOX-ami-LNA, DOX-hyd-PA, and DOX-ami-PA. The cytotoxicity of DOX-hyd-LNA on HepG2, MCF-7, and MDA-231 cells was higher compared to that of DOX, DOX-ami-LNA, DOX-hyd-PA, and DOX-ami-PA. The cytotoxicity of DOX-hyd-LNA on HUVECs was lower than that of DOX. DOX-hyd-LNA released significantly more DOX in pH 5.0 medium than it did in pH 7.4 medium. DOX-hyd-LNA induced more apoptosis in MCF-7 and HepG2 cells than DOX or DOX-ami-LNA. Significantly more DOX was released from DOX-hyd-LNA in both MCF-7 and HepG2 cells compared with DOX-ami-LNA. Compared to free DOX, a biodistribution study showed that DOX-hyd-LNA greatly increased the content of DOX in tumor tissue and decreased the content of DOX in heart tissue after it was intravenously administered. DOX-hyd-LNA improved the survival rate, prolonged the life span, and slowed the growth of the tumor in tumor-bearing nude mice. These results indicate that DOX-hyd-LNA improved the therapeutic index of DOX. Therefore, DOX-hyd-LNA is a potential compound for use as a cancer-targeting therapy.


Journal of Pharmaceutical Sciences | 2015

Actively Targeted Delivery of Doxorubicin to Bone Metastases by a pH-Sensitive Conjugation

Wei-liang Ye; Yi-Pu Zhao; Ren Na; Fei Li; Qibing Mei; Ming-Gao Zhao; Si-Yuan Zhou

Alendronate-monoethyl adipate-(hydrazone)-doxorubicin conjugate (ALN-MA-hyd-DOX) was synthesized to specifically deliver doxorubicin (DOX) to bone tumor tissue. The binding kinetics of ALN-MA-hyd-DOX with hydroxyapatite (HA) and natural bone were detected by using spectrophotometer. Cytotoxicity of ALN-MA-hyd-DOX on tumor cells was determined by MTT [3-(4,5-dimethylthiaol-2-yl)-2,5-diphenyl-tetrazolium bromide] method. The cellular uptake of ALN-MA-hyd-DOX was observed by using fluorescence microscopy. The in vivo antitumor activity of ALN-MA-hyd-DOX was investigated by using tumor-bearing nude mice model. The results indicated that ALN-MA-hyd-DOX was able to quickly bind with HA and natural bone. ALN-MA-hyd-DOX immobilized on the natural bone released more DOX in pH 5.0 medium than that in pH 6.0 or 7.4 medium. The cytotoxicity of ALN-MA-hyd-DOX toward A549 cells and MDA-MB-231/ADR cells was greater than DOX. ALN-MA-hyd-DOX was rapidly uptaken by A549 cells and MDA-MB-231/ADR cells. Compared with the same dose of free DOX, ALN-MA-hyd-DOX significantly decreased tumor volume of tumor-bearing nude mice. DOX mainly distributed in bone tumor tissue after ALN-MA-hyd-DOX was intravenously administered to tumor-bearing nude mice, whereas DOX distributed through the whole body after DOX was intravenously administered to tumor-bearing nude mice. These findings implied that the ALN-MA-hyd-DOX was a promising bone-targeted conjugate for treating bone neoplasms.


Molecular Pharmaceutics | 2017

Mitochondria and Nucleus Dual Delivery System To Overcome DOX Resistance

Han Cui; Menglei Huan; Wei-liang Ye; Dao-zhou Liu; Zenghui Teng; Qibing Mei; Si-Yuan Zhou

Doxorubicin (DOX) is a broad-spectrum chemotherapy drug to treat tumors. However, severe side effects and development of DOX resistance hinder its clinical application. In order to overcome DOX resistance, DOX/TPP-DOX@Pasp-hyd-PEG-FA micelles were prepared by using newly synthesized comb-like amphiphilic material Pasp-hyd-PEG-FA. Drug released in vitro from micelles showed a pH-dependent manner. DOX/TPP-DOX@Pasp-hyd-PEG-FA induced more apoptosis in KB cell and MCF-7/ADR cell than DOX@Pasp-hyd-PEG-FA. Confocal laser scanning microscopy experiment indicated that DOX/TPP-DOX@Pasp-hyd-PEG-FA delivered TPP-DOX and DOX to the nucleus and mitochondria of the tumor cell simultaneously. Thus, DOX/TPP-DOX@Pasp-hyd-PEG-FA could significantly damage the mitochondrial membrane potential. DOX/TPP-DOX@Pasp-hyd-PEG-FA markedly shrinked the tumor volume in tumor-bearing nude mice grafted with MCF-7/ADR cell as compared with the same dose of free DOX. DOX was mainly accumulated in tumor tissue after DOX/TPP-DOX@Pasp-hyd-PEG-FA was injected to tumor-bearing nude mice by tail vein. After free DOX was injected to tumor-bearing nude mice by tail vein, DOX widely distributed through the whole body. Therefore, mitochondria and nucleus dual delivery system has potential in overcoming DOX resistance.


Anti-Cancer Drugs | 2014

PEG-detachable lipid-polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells.

Jiang-bo Du; Yan-feng Song; Wei-liang Ye; Ying Cheng; Han Cui; Dao-zhou Liu; Miao Liu; Bang-Le Zhang; Si-Yuan Zhou

The experiment aimed to increase the drug-delivery efficiency of poly-lactic-co-glycolic acid (PLGA) nanoparticles. Lipid–polymer hybrid nanoparticles (LPNs-1) were prepared using PLGA as a hydrophobic core and FA-PEG-hyd-DSPE as an amphiphilic shell. Uniform and spherical nanoparticles with an average size of 185 nm were obtained using the emulsification solvent evaporation method. The results indicated that LPNs-1 showed higher drug loading compared with naked PLGA nanoparticles (NNPs). Drug release from LPNs-1 was faster in an acidic environment than in a neutral environment. LPNs-1 showed higher cytotoxicity on KB cells, A549 cells, MDA-MB-231 cells, and MDA-MB-231/ADR cells compared with free doxorubicin (DOX) and NNPs. The results also showed that, compared with free DOX and NNPs, LPNs-1 delivered more DOX to the nuclear of KB cells and MDA-MB-231/ADR cells. LPNs-1 induced apoptosis in KB cells and MDA-MB-231/ADR cells in a dose-dependent manner. The above data indicated that DOX-loaded LPNs-1 could kill not only normal tumor cells but also drug-resistant tumor cells. These results indicated that modification of PLGA nanoparticles with FA-PEG-hyd-DSPE could considerably increase the drug-delivery efficiency and LPNs-1 had potential in the delivery of chemotherapeutic agents in the treatment of cancer.


Artificial Cells Nanomedicine and Biotechnology | 2018

Bone metastasis target redox-responsive micell for the treatment of lung cancer bone metastasis and anti-bone resorption

Wei-liang Ye; Yi-Pu Zhao; Ying Cheng; Dao-zhou Liu; Han Cui; Miao Liu; Bang-Le Zhang; Qibing Mei; Si-Yuan Zhou

Abstract In order to inhibit the growth of lung cancer bone metastasis and reduce the bone resorption at bone metastasis sites, a bone metastasis target micelle DOX@DBMs-ALN was prepared. The size and the zeta potential of DOX@DBNs-ALN were about 60 nm and −15 mV, respectively. DOX@DBMs-ALN exhibited high binding affinity with hydroxyapatite and released DOX in redox-responsive manner. DOX@DBMs-ALN was effectively up taken by A549 cells and delivered DOX to the nucleus of A549 cells, which resulted in strong cytotoxicity on A549 cells. The in vivo experimental results indicated that DOX@DBMs-ALN specifically delivered DOX to bone metastasis site and obviously prolonged the retention time of DOX in bone metastasis site. Moreover, DOX@DBMs-ALN not only significantly inhibited the growth of bone metastasis tumour but also obviously reduced the bone resorption at bone metastasis sites without causing marked systemic toxicity. Thus, DOX@DBMs-ALN has great potential in the treatment of lung cancer bone metastasis. Graphical Abstract


Nanoscale | 2017

Redox and pH dual sensitive bone targeting nanoparticles to treat breast cancer bone metastases and inhibit bone resorption

Yi-Pu Zhao; Wei-liang Ye; Dao-zhou Liu; Han Cui; Ying Cheng; Miao Liu; Bang-Le Zhang; Qibing Mei; Si-Yuan Zhou

Collaboration


Dive into the Wei-liang Ye's collaboration.

Top Co-Authors

Avatar

Si-Yuan Zhou

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Dao-zhou Liu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Qibing Mei

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Bang-Le Zhang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Han Cui

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Ying Cheng

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Miao Liu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Ren Na

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yan-feng Song

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yi-Pu Zhao

Fourth Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge