Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wei-Lien Chuang is active.

Publication


Featured researches published by Wei-Lien Chuang.


Clinical Chemistry | 2008

Multiplex Enzyme Assay Screening of Dried Blood Spots for Lysosomal Storage Disorders by Using Tandem Mass Spectrometry

X. Kate Zhang; Carole Elbin; Wei-Lien Chuang; Samantha Cooper; Carla Marashio; Christa Beauregard; Joan Keutzer

BACKGROUND Reports of the use of multiplex enzyme assay screening for Pompe disease, Fabry disease, Gaucher disease, Niemann-Pick disease types A and B, and Krabbe disease have engendered interest in the use of this assay in newborn screening. We modified the assay for high-throughput use in screening laboratories. METHODS We optimized enzyme reaction conditions and procedures for the assay, including the concentrations of substrate (S) and internal standard (IS), assay cocktail compositions, sample clean-up procedures, and mass spectrometer operation. The S and IS for each enzyme were premixed and bottled at an optimized molar ratio to simplify assay cocktail preparation. Using the new S:IS ratio, we validated the modified assay according to CLSI guidelines. Stability of the S, IS, and assay cocktails were investigated. Dried blood spots from 149 healthy adults, 100 newborns, and 60 patients with a lysosomal storage disorder (LSD) were tested using the modified assay. RESULTS In our study, the median enzyme activity measured in adults was generally increased 2-3-fold compared to the original method, results indicating higher precision. In the multiplex format, each of the 5 modified enzyme assays enabled unambiguous differentiation between samples from healthy individuals (adults and newborns) and the corresponding disease-specific samples. CONCLUSIONS The modified multiplex enzyme assay with premixed S and IS is appropriate for use in high-throughput screening laboratories.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Glucocerebrosidase gene-deficient mouse recapitulates Gaucher disease displaying cellular and molecular dysregulation beyond the macrophage

Pramod K. Mistry; Jun Liu; Mei Yang; Timothy Nottoli; James McGrath; Dhanpat Jain; Kate Zhang; Joan Keutzer; Wei-Lien Chuang; Wajahat Z. Mehal; Hongyu Zhao; Aiping Lin; Shrikant Mane; Xuan Liu; Yuan Z. Peng; Jian H. Li; Manasi Agrawal; Ling-Ling Zhu; Harry C. Blair; Lisa J. Robinson; Jameel Iqbal; Li Sun; Mone Zaidi

In nonneuronopathic type 1 Gaucher disease (GD1), mutations in the glucocerebrosidase gene (GBA1) gene result in glucocerebrosidase deficiency and the accumulation of its substrate, glucocerebroside (GL-1), in the lysosomes of mononuclear phagocytes. This prevailing macrophage-centric view, however, does not explain emerging aspects of the disease, including malignancy, autoimmune disease, Parkinson disease, and osteoporosis. We conditionally deleted the GBA1 gene in hematopoietic and mesenchymal cell lineages using an Mx1 promoter. Although this mouse fully recapitulated human GD1, cytokine measurements, microarray analysis, and cellular immunophenotyping together revealed widespread dysfunction not only of macrophages, but also of thymic T cells, dendritic cells, and osteoblasts. The severe osteoporosis was caused by a defect in osteoblastic bone formation arising from an inhibitory effect of the accumulated lipids LysoGL-1 and GL-1 on protein kinase C. This study provides direct evidence for the involvement in GD1 of multiple cell lineages, suggesting that cells other than macrophages may be worthwhile therapeutic targets.


Journal of Gene Medicine | 2006

AAV8-mediated expression of glucocerebrosidase ameliorates the storage pathology in the visceral organs of a mouse model of Gaucher disease

Kerry Anne McEachern; Jennifer B. Nietupski; Wei-Lien Chuang; Donna Armentano; Jennifer Johnson; Elizabeth Hutto; Gregory A. Grabowski; Seng H. Cheng; John Marshall

Gaucher disease is the most common of the lysosomal storage disorders. The primary manifestation is the accumulation of glucosylceramide (GL‐1) in the macrophages of liver and spleen (Gaucher cells), due to a deficiency in the lysosomal hydrolase glucocerebrosidase (GC). A Gaucher mouse model (D409V/null) exhibiting reduced GC activity and accumulation of GL‐1 was used to evaluate adeno‐associated viral (AAV)‐mediated gene therapy.


Clinical Biochemistry | 2009

Implementation of newborn screening for Krabbe disease: Population study and cutoff determination

Joseph J. Orsini; Mark A. Morrissey; Laura N. Slavin; Matthew Wojcik; Chad K. Biski; Monica Martin; Joan Keutzer; X. Kate Zhang; Wei-Lien Chuang; Carole Elbin; Michele Caggana

OBJECTIVE The aim of this study was to develop a newborn screening algorithm for Krabbe disease. DESIGN AND METHODS We measured the galactocerebrosidase activity of 139,074 anonymous newborns, 56 known carriers, and 16 Krabbe patients using a tandem mass spectrometry method. The activities were converted to percentages of daily mean activity (%DMA), and the results from diseased and normal populations were used to establish cutoffs. RESULTS The absolute activities for the newborns ranged from 0.17 to 355 micromol/L h (N=139,074) and activities for Krabbe-positive controls ranged from 0.08 to 0.48 micromol/L h (N=16, n=91 measurements) while activities for carriers ranged from 0.28 to 2.71 micromol/L h (N=56, n=72 measurements). Cutoffs were set based on results from Krabbe-positive and carrier controls and the newborn population distribution. CONCLUSIONS The algorithm and cutoffs we propose provided 100% detection of all positive controls with 60/100,000 screen positive results predicted. In the course of this study, one anonymous newborn was predicted to have Krabbe disease based on enzyme activity and subsequent DNA analysis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Glucocerebrosidase 2 gene deletion rescues type 1 Gaucher disease.

Pramod K. Mistry; Jun Liu; Li Sun; Wei-Lien Chuang; Tony Yuen; Ruhua Yang; Ping Lu; Kate Zhang; Jianhua Li; Joan Keutzer; Agnes Stachnik; Albert Mennone; James L. Boyer; Dhanpat Jain; Roscoe O. Brady; Maria I. New; Mone Zaidi

Significance Type 1 Gaucher disease (GD1) is a rare autosomal recessive disorder caused by inherited mutations in the glucocerebrosidase (GBA1) gene. This disease results in a marked accumulation of glycosphingolipid substrates, causing visceromegaly, cytopenia, and osteopenia. Here, we have rescued this clinical phenotype in GD1 mice by genetically deleting Gba2, a gene encoding a downstream extralysosomal enzyme, GBA2. We also report that sphingosine production in GD1 patients may contribute to the low-turnover bone loss. Our data suggest that GBA2 and sphingosine are potential targets for pharmacological intervention in GD1 patients. The inherited deficiency of the lysosomal glucocerebrosidase (GBA) due to mutations in the GBA gene results in Gaucher disease (GD). A vast majority of patients present with nonneuronopathic, type 1 GD (GD1). GBA deficiency causes the accumulation of two key sphingolipids, glucosylceramide (GL-1) and glucosylsphingosine (LysoGL-1), classically noted within the lysosomes of mononuclear phagocytes. How metabolites of GL-1 or LysoGL-1 produced by extralysosomal glucocerebrosidase GBA2 contribute to the GD1 pathophysiology is not known. We recently recapitulated hepatosplenomegaly, cytopenia, hypercytokinemia, and the bone-formation defect of human GD1 through conditional deletion of Gba in Mx1–Cre+:GD1 mice. Here we show that the deletion of Gba2 significantly rescues the GD1 clinical phenotype, despite enhanced elevations in GL-1 and LysoGL-1. Most notably, the reduced bone volume and bone formation rate are normalized. These results suggest that metabolism of GL-1 or LysoGL-1 into downstream bioactive lipids is a major contributor to the bone-formation defect. Direct testing revealed a strong inhibition of osteoblast viability by nanomolar concentrations of sphingosine, but not of ceramide. These findings are consistent with toxicity of high circulating sphingosine levels in GD1 patients, which decline upon enzyme-replacement therapy; serum ceramide levels remain unchanged. Together, complementary results from mice and humans affected with GD1 not only pinpoint sphingosine as being an osteoblast toxin, but also set forth Gba2 as a viable therapeutic target for the development of inhibitors to ameliorate certain disabling consequences of GD1.


American Journal of Hematology | 2016

Glucosylsphingosine is a key biomarker of Gaucher disease.

Vagishwari Murugesan; Wei-Lien Chuang; Jun Liu; Andrew W. Lischuk; Katherine Kacena; Haiqun Lin; Gregory M. Pastores; Ruhua Yang; Joan Keutzer; Kate Zhang; Pramod K. Mistry

Gaucher disease (GD) involves the accumulation of glucosylceramide (GL1) and its deacylated lysolipid, glucosylsphingosine (lyso‐GL1) which is implicated in mediating immune dysregulation and skeletal disease. The aim of our study was to assess plasma Lyso‐GL1 as a biomarker of GD and its response to therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Gaucher disease gene GBA functions in immune regulation

Jun Liu; Stephanie Halene; Mei Yang; Jameel Iqbal; Ruhua Yang; Wajahat Z. Mehal; Wei-Lien Chuang; Dhanpat Jain; Tony Yuen; Li Sun; Mone Zaidi; Pramod K. Mistry

Inherited deficiency of acid β-glucosidase (GCase) due to biallelic mutations in the GBA (glucosidase, β, acid) gene causes the classic manifestations of Gaucher disease (GD) involving the viscera, the skeleton, and the lungs. Clinical observations point to immune defects in GD beyond the accumulation of activated macrophages engorged with lysosomal glucosylceramide. Here, we show a plethora of immune cell aberrations in mice in which the GBA gene is deleted conditionally in hematopoietic stem cells (HSCs). The thymus exhibited the earliest and most striking alterations reminiscent of impaired T-cell maturation, aberrant B-cell recruitment, enhanced antigen presentation, and impaired egress of mature thymocytes. These changes correlated strongly with disease severity. In contrast to the profound defects in the thymus, there were only limited cellular defects in peripheral lymphoid organs, mainly restricted to mice with severe disease. The cellular changes in GCase deficiency were accompanied by elevated T-helper (Th)1 and Th2 cytokines that also tracked with disease severity. Finally, the proliferation of GCase-deficient HSCs was inhibited significantly by both GL1 and Lyso-GL1, suggesting that the “supply” of early thymic progenitors from bone marrow may, in fact, be reduced in GBA deficiency. The results not only point to a fundamental role for GBA in immune regulation but also suggest that GBA mutations in GD may cause widespread immune dysregulation through the accumulation of substrates.


Molecular Genetics and Metabolism | 2012

Iminosugar-based inhibitors of glucosylceramide synthase prolong survival but paradoxically increase brain glucosylceramide levels in Niemann–Pick C mice

Jennifer B. Nietupski; Joshua Pacheco; Wei-Lien Chuang; Kimberly Maratea; Lingyun Li; Joseph Foley; Karen M. Ashe; Christopher G.F. Cooper; Johannes M. F. G. Aerts; Diane P. Copeland; Ronald K. Scheule; Seng H. Cheng; John Marshall

Niemann Pick type C (NPC) disease is a progressive neurodegenerative disease caused by mutations in NPC1 or NPC2, the gene products of which are involved in cholesterol transport in late endosomes. NPC is characterized by an accumulation of cholesterol, sphingomyelin and glycosphingolipids in the visceral organs, primarily the liver and spleen. In the brain, there is a redistribution of unesterified cholesterol and a concomitant accumulation of glycosphingolipids. It has been suggested that reducing the aberrant lysosomal storage of glycosphingolipids in the brain by a substrate reduction therapy (SRT) approach may prove beneficial. Inhibiting glucosylceramide synthase (GCS) using the iminosugar-based inhibitor miglustat (NB-DNJ) has been reported to increase the survival of NPC mice. Here, we tested the effects of Genz-529468, a more potent iminosugar-based inhibitor of GCS, in the NPC mouse. Oral administration of Genz-529468 or NB-DNJ to NPC mice improved their motor function, reduced CNS inflammation, and increased their longevity. However, Genz-529468 offered a wider therapeutic window and better therapeutic index than NB-DNJ. Analysis of the glycolipids in the CNS of the iminosugar-treated NPC mouse revealed that the glucosylceramide (GL1) but not the ganglioside levels were highly elevated. This increase in GL1 was likely caused by the off-target inhibition of the murine non-lysosomal glucosylceramidase, Gba2. Hence, the basis for the observed effects of these inhibitors in NPC mice might be related to their inhibition of Gba2 or another unintended target rather than a result of substrate reduction.


Experimental Neurology | 2010

Intracerebroventricular delivery of glucocerebrosidase reduces substrates and increases lifespan in a mouse model of neuronopathic Gaucher disease

Mario A. Cabrera-Salazar; Scott D. Bercury; Robin J. Ziegler; John Marshall; Bradley L. Hodges; Wei-Lien Chuang; Joshua Pacheco; Lingyun Li; Seng H. Cheng; Ronald K. Scheule

Gaucher disease is caused by a deficit in the enzyme glucocerebrosidase. As a consequence, degradation of the glycolipids glucosylceramide (GluCer) and glucosylsphingosine (GluSph) is impaired, and their subsequent buildup can lead to significant pathology and early death. Type 1 Gaucher patients can be treated successfully with intravenous replacement enzyme, but this enzyme does not reach the CNS and thus does not ameliorate the neurological involvement in types 2 and 3 Gaucher disease. As one potential approach to treating these latter patients, we have evaluated intracerebroventricular (ICV) administration of recombinant human glucocerebrosidase (rhGC) in a mouse model of neuronopathic Gaucher disease. ICV administration resulted in enzyme distribution throughout the brain and alleviated neuropathology in multiple brain regions of this mouse model. Treatment also resulted in dose-dependent decreases in GluCer and GluSph and significantly extended survival. To evaluate the potential of continuous enzyme delivery, a group of animals was treated ICV with an adeno-associated viral vector encoding hGC and resulted in a further extension of survival. These data suggest that ICV administration of rhGC may represent a potential therapeutic approach for type 2/3 Gaucher patients. Preclinical evaluation in larger animals will be needed to ascertain the translatability of this approach to the clinic.


Molecular Genetics and Metabolism | 2014

Lyso-sphingomyelin is elevated in dried blood spots of Niemann–Pick B patients

Wei-Lien Chuang; Joshua Pacheco; Samantha Cooper; Margaret M. McGovern; Gerald F. Cox; Joan Keutzer; X. Kate Zhang

Niemann-Pick disease type B (NPD-B) is caused by a partial deficiency of acid sphingomyelinase activity and results in the accumulation of lysosomal sphingomyelin (SPM) predominantly in macrophages. Notably, SPM is not significantly elevated in the plasma, whole blood, or urine of NPD-B patients. Here, we show that the de-acylated form of sphingomyelin, lyso-SPM, is elevated approximately 5-fold in dried blood spots (DBS) from NPD-B patients and has no overlap with normal controls, making it a potentially useful biomarker.

Collaboration


Dive into the Wei-Lien Chuang's collaboration.

Researchain Logo
Decentralizing Knowledge