Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wei Qin is active.

Publication


Featured researches published by Wei Qin.


Angewandte Chemie | 2014

Magnetic and Optoelectronic Properties of Gold Nanocluster–Thiophene Assembly†

Wei Qin; Jessica Lohrman; Shenqiang Ren

Nanohybrids consisting of Au nanocluster and polythiophene nanowire assemblies exhibit unique thermal-responsive optical behaviors and charge-transfer controlled magnetic and optoelectronic properties. The ultrasmall Au nanocluster enhanced photoabsorption and conductivity effectively improves the photocurrent of nanohybrid based photovoltaics, leading to an increase of power conversion efficiency by 14 % under AM 1.5 illumination. In addition, nanohybrids exhibit electric field controlled spin resonance and magnetic field sensing behaviors, which open up the potential of charge-transfer complex system where the magnetism and optoelectronics interact.


ACS Nano | 2014

Charge-transfer magnetoelectrics of polymeric multiferroics.

Wei Qin; Daniel Jasion; Xiaomin Chen; Manfred Wuttig; Shenqiang Ren

The renaissance of multiferroics has yielded a deeper understanding of magneto-electric coupling of inorganic single-phase multiferroics and composites. Here, we report charge-transfer polymeric multiferroics, which exhibit external field-controlled magnetic, ferroelectric, and microwave response, as well as magneto-dielectric coupling. The charge-transfer-controlled ferroic properties result from the magnetic field-tunable triplet exciton which has been validated by the dynamic polaron-bipolaron transition model. In addition, the temperature-dependent dielectric discontinuity and electric-field-dependent polarization confirms room temperature ferroelectricity of crystalline charge-transfer polymeric multiferroics due to the triplet exciton, which allows the tunability of polarization by the photoexcitation.


Advanced Materials | 2015

Multiferroicity of Carbon‐Based Charge‐Transfer Magnets

Wei Qin; Maogang Gong; Xiaomin Chen; Tejas A. Shastry; Ridwan Sakidja; Guoliang Yuan; Mark C. Hersam; Manfred Wuttig; Shenqiang Ren

A new type of carbon charge-transfer magnet, consisting of a fullerene acceptor and single-walled carbon nanotube donor, is demonstrated, which exhibits room temperature ferromagnetism and magnetoelectric (ME) coupling. In addition, external stimuli (electric/magnetic/elastic field) and the concentration of a nanocarbon complex enable the tunabilities of the magnetization and ME coupling due to the control of the charge transfer.


ACS Nano | 2015

Room Temperature Multiferroicity of Charge Transfer Crystals.

Wei Qin; Xiaomin Chen; Huashan Li; Maogang Gong; Guoliang Yuan; Jeffrey C. Grossman; Manfred Wuttig; Shenqiang Ren

Room temperature multiferroics has been a frontier research field by manipulating spin-driven ferroelectricity or charge-order-driven magnetism. Charge-transfer crystals based on electron donor and acceptor assembly, exhibiting simultaneous spin ordering, are drawing significant interests for the development of all-organic magnetoelectric multiferroics. Here, we report that a remarkable anisotropic magnetization and room temperature multiferroicity can be achieved through assembly of thiophene donor and fullerene acceptor. The crystal motif directs the dimensional and compositional control of charge-transfer networks that could switch magnetization under external stimuli, thereby opening up an attractive class of all-organic nanoferronics.


Applied Physics Letters | 2012

Investigation on organic magnetoconductance based on polaron-bipolaron transition

Wei Qin; Sun Yin; Kun Gao; Shijie Xie

We explore the magnetoresistance (MC) effect in an organic semiconductor device based on the magnetic field related bipolaron formation. By establishing a group of dynamic equations, we present the transition among spin-parallel, spin-antiparallel polaron pairs and bipolarons. The transition rates are adjusted by the external magnetic field as well as the hyperfine interaction of the hydrogen nuclei. The hyperfine interaction is addressed and treated in the frame work of quantum mechanics. By supposing the different mobility of polarons from that of bipolarons, we obtain the MC in an organic semiconductor device. The theoretical calculation is well consistent to the experimental data. It is predicated that a maximum MC appears at a suitable branching ratio of bipolarons. Our investigation reveals the important role of hyperfine interaction in organic magnetic effect.


Journal of Materials Chemistry | 2017

Dual Förster resonance energy transfer effects in non-fullerene ternary organic solar cells with the third component embedded in the donor and acceptor

Peng-Qing Bi; Fei Zheng; Xiao-Yu Yang; Meng-Si Niu; Lin Feng; Wei Qin; Xiao-Tao Hao

Non-fullerene ternary organic solar cells (OSCs) are new promising candidates for future applications in the area of organic photovoltaics. However, their low short-circuit current (JSC) values impede efforts at increasing their power conversion efficiency (PCE) levels. Maximizing the JSC is one of the critical elements for enabling high performances of OSCs. To improve the JSC of the non-fullerene ternary OSCs based on poly[[2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b:3,3-b]dithiophene][3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]:3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]-dithiophene (PTB7-Th:ITIC), a polymer of poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) was added to the binary system. The PCDTBT was shown to embed in both PTB7-Th and ITIC, and introduced dual Forster resonance energy transfer (FRET) effects in the resulting ternary system. In addition, the PCDTBT may have decreased the molecular coherence lengths of PTB7-Th and ITIC and influenced the charge transport. Furthermore, the PCDTBT apparently also decreased the d-spacing of the π–π stacking of PTB7-Th and ITIC, which likely increased the intermolecular charge hopping efficiency. Doping an appropriate amount of PCDTBT in the system yielded an increase in the JSC from 13.89 to 16.71 mA cm−2. The increased JSC resulted in a 15% enhancement of the PCE, which indicated that introducing dual FRET effects is an effective way to enhance the JSC and thus the performance of the OSCs.


Scientific Reports | 2015

Charge-Transfer Induced Magnetic Field Effects of Nano-Carbon Heterojunctions

Wei Qin; Maogang Gong; Tejas A. Shastry; Mark C. Hersam; Shenqiang Ren

Room temperature magnetic field effects have not been definitively observed in either single-walled carbon nanotubes (SWCNTs) or C60 under a small magnetic field due to their weak hyperfine interaction and slight difference of g-factor between positive and negative polarons. Here, we demonstrate charge-transfer induced magnetic field effects in nano-carbon C60-SWCNT bulk heterojunctions at room temperature, where the mechanism of magnetic field effects is verified using excited state transition modeling. By controlling SWCNT concentrations and interfacial interactions, nano-carbon heterojunctions exhibit tunability of charge-transfer density and room temperature magnetoconductance of 2.8% under 100 mT external magnetic field. External stimuli, such as electric field and photoexcitation, also play an important role in controlling the magnetic field effects of nano-carbon heterojunctions, which suggests that these findings could enable the control of optoelectronic properties of nano-carbon heterojunctions.


RSC Advances | 2015

Synthesis and characterization of rare-earth-free magnetic manganese bismuth nanocrystals

Jian Q. Shen; Huizhong Cui; Xiaopeng Huang; Maogang Gong; Wei Qin; Alec Kirkeminde; Jun Cui; Shenqiang Ren

Earth abundant manganese bismuth (MnBi) has long been of interest due to its large magnetocrystalline anisotropy and high energy density for advanced permanent magnet applications. However, solution synthesis of MnBi phase is challenging due to the reduction potential mismatch between Mn and Bi elements. In this study, we show a versatile MnBi synthesis method involving the metal co-reduction followed by thermal annealing. The magnetically hard MnBi crystalline phase is then exchange coupled with magnetically soft cobalt coating. Our processing approach offers a promising strategy for manufacturing rare-earth-free magnetic nanocrystals.


Nano Research | 2016

External stimuli controlled multiferroic charge-transfer crystals

Wei Qin; Xiaomin Chen; Jessica Lohrman; Maogang Gong; Guoliang Yuan; Manfred Wuttig; Shenqiang Ren

Multiferroic charge-transfer crystals have drawn significant interest due to their simultaneous dipolar and spin ordering. Numerous theoretical and experimental studies have shown that the molecular stacking between donor and acceptor complexes plays an important role in tuning charge-transfer enabled multifunctionality. Herein, we show that the charge-transfer interactions can be controlled by the segregated stack, consisting of polythiophene donor- and fullerene acceptor-based all-conjugated block copolymers. Room temperature magnetic field effects, ferroelectricity, and anisotropic magnetism are observed in charge-transfer crystals, which can be further controlled by photoexcitation and charge doping. Furthermore, the charge-transfer segregated stack crystals demonstrate external stimuli controlled polarization and magnetization, which opens up their multifunctional applications for all-organic multiferroics.


Scientific Reports | 2016

Spin polarization of excitons in organic multiferroic composites

Shixuan Han; Liu Yang; Kun Gao; Shijie Xie; Wei Qin; Shenqiang Ren

Recently, the discovery of room temperature magnetoelectricity in organic charge transfer complexes has reignited interest in the multiferroic field. The solution processed, large-area and low cost organic semiconductor materials offer new possibilities for the functional all organic multiferroic devices. Here we report the spin polarization of excitons and charge transfer states in organic charge transfer composites by using extended Su-Schrieffer-Heeger model including Coulomb interaction and spin-flip effect. With the consideration of spin polarization, we suggest a possible mechanism for the origin of excited ferromagnetism.

Collaboration


Dive into the Wei Qin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaomin Chen

Nanjing University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Guoliang Yuan

Nanjing University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge