Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weibin Gong is active.

Publication


Featured researches published by Weibin Gong.


Journal of Biological Chemistry | 2012

Structural Insight into Recognition of Methylated Histone Tails by Retinoblastoma-binding Protein 1

Weibin Gong; Tao Zhou; Jinjin Mo; Sarah Perrett; Jinfeng Wang; Yingang Feng

Background: Retinoblastoma-binding protein 1 (RBBP1), a tumor suppressor, is involved in epigenetic regulation in cancer. Results: The chromobarrel domain of RBBP1 binds methylated histone tails, whereas Tudor and PWWP domains do not. Conclusion: The chromobarrel domain of RBBP1 is responsible for epigenetic regulation. Significance: Our research provides a structural basis to understand the mechanism of RBBP1-mediated epigenetic regulation. Retinoblastoma-binding protein 1 (RBBP1), also named AT-rich interaction domain containing 4A (ARID4A), is a tumor and leukemia suppressor involved in epigenetic regulation in leukemia and Prader-Willi/Angelman syndromes. Although the involvement in epigenetic regulation is proposed to involve its chromobarrel and/or Tudor domains because of their potential binding to methylated histone tails, the structures of these domains and their interactions with methylated histone tails are still uncharacterized. In this work, we first found that RBBP1 contains five domains by bioinformatics analysis. Three of the five domains, i.e. chromobarrel, Tudor, and PWWP domains, are Royal Family domains, which potentially bind to methylated histone tails. We further purified these domains and characterized their interaction with methylated histone tails by NMR titration experiments. Among the three Royal Family domains, only the chromobarrel domain could recognize trimethylated H4K20 (with an affinity of ∼3 mm), as well as recognizing trimethylated H3K9, H3K27, and H3K36 (with lower affinities). The affinity could be further enhanced up to 15-fold by the presence of DNA. The structure of the chromobarrel domain of RBBP1 determined by NMR spectroscopy has an aromatic cage. Mutagenesis analysis identified four aromatic residues of the cage as the key residues for methylated lysine recognition. Our studies indicate that the chromobarrel domain of RBBP1 is responsible for recognizing methylated histone tails in chromatin remodeling and epigenetic regulation, which presents a significant advance in our understanding of the mechanism and relationship between RBBP1-related gene suppression and epigenetic regulation.


Biochemistry | 2011

Solution Structure of LCI, a Novel Antimicrobial Peptide from Bacillus subtilis

Weibin Gong; Jinfeng Wang; Zhangliang Chen; Bin Xia; Guang‐Ying Lu

LCI, a 47-residue cationic antimicrobial peptide (AMP) found in Bacillus subtilis, is one of the main effective components that have strong antimicrobial activity against Xanthomonas campestris pv Oryzea and Pseudomonas solanacearum PE1, etc. To provide insight into the activity of the peptide, we used nuclear magnetic resonance spectroscopy to determine the structure of recombinant LCI. The solution structure of LCI has a novel topology, containing a four-strand antiparallel β-sheet as the dominant secondary structure. It is the first structure of the LCI protein family. Different from any known β-structure AMPs, LCI contains no disulfide bridge or circular structure, suggesting that LCI is also a novel β-structure AMP.


Biochemistry | 2013

Anti-apoptosis proteins Mcl-1 and Bcl-xL have different p53-binding profiles.

Hongwei Yao; Shuofu Mi; Weibin Gong; Jian Lin; Nuo Xu; Sarah Perrett; Bin Xia; Jinfeng Wang; Yingang Feng

One of the transcription-independent mechanisms of the tumor suppressor p53 discovered in recent years involves physical interaction between p53 and proteins of the Bcl-2 family. In this paper, significant differences between the interaction of p53 with Mcl-1 and Bcl-xL were demonstrated by NMR spectroscopy and isothermal titration calorimetry. Bcl-xL was found to bind strongly to the p53 DNA-binding domain (DBD) with a dissociation constant (Kd) of ~600 nM, whereas Mcl-1 binds to the p53 DBD weakly with a dissociation constant in the mM range. In contrast, the p53 transactivation domain (TAD) binds weakly to Bcl-xL with a Kd ~ 300-500 μM and strongly to Mcl-1 with a Kd ~ 10-20 μM. NMR titrations indicate that although the p53 TAD binds to the BH3-binding grooves of both Bcl-xL and Mcl-1, Bcl-xL prefers to bind to the first subdomain (TAD1) in the p53 TAD, and Mcl-1 prefers to bind to the second subdomain (TAD2). Therefore, Mcl-1 and Bcl-xL have different p53-binding profiles. This indicates that the detailed interaction mechanisms are different, although both Mcl-1 and Bcl-xL can mediate transcription-independent cytosolic roles of p53. The revealed differences in binding sites and binding affinities should be considered when BH3 mimetics are used in cancer therapy development.


Journal of Biological Chemistry | 2016

Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response

Hong Zhang; Jie Yang; Si Wu; Weibin Gong; Chang Chen; Sarah Perrett

DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ32 and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoes S-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ32 becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ32 from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria.


Journal of Biological Chemistry | 2015

Evolutionarily Conserved Binding of Translationally Controlled Tumor Protein to Eukaryotic Elongation Factor 1B.

Huiwen Wu; Weibin Gong; Xingzhe Yao; Jinfeng Wang; Sarah Perrett; Yingang Feng

Background: The primary function of the abundant and highly conserved protein TCTP is not clear. Results: TCTP binds to a conserved central acidic region of eukaryotic elongation factor 1Bα/β/δ. Conclusion: The binding of TCTP to eukaryotic elongation factor 1B is evolutionarily conserved. Significance: The interaction with eEF1B represents a primary function of TCTP. Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP.


Journal of Molecular Cell Biology | 2016

New insights into the structural basis of DNA recognition by HINa and HINb domains of IFI16

Xiangmin Ni; Heng Ru; Feng Ma; Lixia Zhao; Neil Shaw; Yingang Feng; Wei Ding; Weibin Gong; Qiaofeng Wang; Songying Ouyang; Genhong Cheng; Zhi-Jie Liu

Interferon gamma-inducible protein 16 (IFI16) senses DNA in the cytoplasm and the nucleus by using two tandem hematopoietic interferon-inducible nuclear (HIN) domains, HINa and HINb, through the cooperative assembly of IFI16 filaments on double-stranded DNA (dsDNA). The role of HINa in sensing DNA is not clearly understood. Here, we describe the crystal structure of the HINa domain in complex with DNA at 2.55 Å resolution and provide the first insight into the mode of DNA binding by the HINa domain. The structure reveals the presence of two oligosaccharide/nucleotide-binding (OB) folds with a unique DNA-binding surface. HINa uses loop L45 of the canonical OB2 fold to bind to the DNA backbone. The dsDNA is recognized as two single strands of DNA. Interestingly, deletion of HINb compromises the ability of IFI16 to induce IFN-β, while HINa mutants impaired in DNA binding enhance the production of IFN-β. These results shed light on the roles of IFI16 HIN domains in DNA recognition and innate immune responses.


Journal of Biological Chemistry | 2014

Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA-binding activity

Weibin Gong; Jinfeng Wang; Sarah Perrett; Yingang Feng

Background: Retinoblastoma-binding protein 1 (RBBP1), a tumor suppressor, has a Tudor domain with unknown function. Results: The Tudor domain adopts an interdigitated double Tudor structure with DNA binding activity. Conclusion: The Tudor domain of the RBBP1 family is a DNA binding module. Significance: Our research provides further structural insights into RBBP1 function and the diversity of Tudor domains. Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10–100 μm; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.


Scientific Reports | 2017

The propensity of the bacterial rodlin protein RdlB to form amyloid fibrils determines its function in Streptomyces coelicolor

Wen Yang; Joost Willemse; Elizabeth B. Sawyer; Fei Lou; Weibin Gong; Hong Zhang; Sally L. Gras; Dennis Claessen; Sarah Perrett

Streptomyces bacteria form reproductive aerial hyphae that are covered with a pattern of pairwise aligned fibrils called rodlets. The presence of the rodlet layer requires two homologous rodlin proteins, RdlA and RdlB, and the functional amyloid chaplin proteins, ChpA-H. In contrast to the redundancy shared among the eight chaplins, both RdlA and RdlB are indispensable for the establishment of this rodlet structure. By using a comprehensive biophysical approach combined with in vivo characterization we found that RdlB, but not RdlA, readily assembles into amyloid fibrils. The marked difference in amyloid propensity between these highly similar proteins could be largely attributed to a difference in amino acid sequence at just three sites. Further, an engineered RdlA protein in which these three key amino acids were replaced with the corresponding residues from RdlB could compensate for loss of RdlB and restore formation of the surface-exposed amyloid layer in bacteria. Our data reveal that RdlB is a new functional amyloid and provide a biophysical basis for the functional differences between the two rodlin proteins. This study enhances our understanding of how rodlin proteins contribute to formation of an outer fibrillar layer during spore morphogenesis in streptomycetes.


Cellular and Molecular Life Sciences | 2018

The β6/β7 region of the Hsp70 substrate-binding domain mediates heat-shock response and prion propagation

Linan Xu; Weibin Gong; Sarah A. Cusack; Huiwen Wu; Harriët M. Loovers; Hong Zhang; Sarah Perrett; Gary W. Jones

Hsp70 is a highly conserved chaperone that in addition to providing essential cellular functions and aiding in cell survival following exposure to a variety of stresses is also a key modulator of prion propagation. Hsp70 is composed of a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). The key functions of Hsp70 are tightly regulated through an allosteric communication network that coordinates ATPase activity with substrate-binding activity. How Hsp70 conformational changes relate to functional change that results in heat shock and prion-related phenotypes is poorly understood. Here, we utilised the yeast [PSI+] system, coupled with SBD-targeted mutagenesis, to investigate how allosteric changes within key structural regions of the Hsp70 SBD result in functional changes in the protein that translate to phenotypic defects in prion propagation and ability to grow at elevated temperatures. We find that variants mutated within the β6 and β7 region of the SBD are defective in prion propagation and heat-shock phenotypes, due to conformational changes within the SBD. Structural analysis of the mutants identifies a potential NBD:SBD interface and key residues that may play important roles in signal transduction between domains. As a consequence of disrupting the β6/β7 region and the SBD overall, Hsp70 exhibits a variety of functional changes including dysregulation of ATPase activity, reduction in ability to refold proteins and changes to interaction affinity with specific co-chaperones and protein substrates. Our findings relate specific structural changes in Hsp70 to specific changes in functional properties that underpin important phenotypic changes in vivo. A thorough understanding of the molecular mechanisms of Hsp70 regulation and how specific modifications result in phenotypic change is essential for the development of new drugs targeting Hsp70 for therapeutic purposes.


Prion | 2018

The same but different: the role of Hsp70 in heat shock response and prion propagation

Linan Xu; Weibin Gong; Hong Zhang; Sarah Perrett; Gary W. Jones

ABSTRACT The Hsp70 chaperone machinery is a key component of the heat-shock response and a modulator of prion propagation in yeast. A major factor in optimizing Hsp70 function is the highly coordinated activities of the nucleotide-binding and substrate-binding domains of the protein. Hsp70 inter-domain communication occurs through a bidirectional allosteric interaction network between the two domains. Recent findings identified the β6/β7 region of the substrate-binding domain as playing a critical role in optimizing Hsp70 function in both the stress response and prion propagation and highlighted the allosteric interaction interface between the domains. Importantly, while functional changes in Hsp70 can result in phenotypic consequences for both the stress response and prion propagation, there can be significant differences in the levels of phenotypic impact that such changes illicit.

Collaboration


Dive into the Weibin Gong's collaboration.

Top Co-Authors

Avatar

Sarah Perrett

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinfeng Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yingang Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huiwen Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Si Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wanhui Hu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge