Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weicheng Wu is active.

Publication


Featured researches published by Weicheng Wu.


Neurochemistry International | 2012

Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity.

Dongmei Zhang; Linlin Sun; Haiyan Zhu; Lan Wang; Weicheng Wu; Jianhui Xie; Jianxin Gu

Chronic neurodegeneration is in part caused by a vicious cycle of persistent microglial activation and progressive neuronal cell loss. However, the driving force behind this cycle remains poorly understood. In this study, we used medium conditioned by necrotic differentiated-PC12 cells to confirm that damaged neurons can release soluble injury signals, including heat shock protein 60 (HSP60), to efficiently promote the neurotoxic cycle involving microglia. Since lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has previously been identified as a novel receptor for HSP60, we hypothesize that LOX-1 through binding to extracellular HSP60 promotes microglia-mediated neuroinflammation. In this study, we observed that LOX-1 expression is induced upon toxic microglial activation, and discovered that LOX-1 is necessary in microglia for sensing soluble neuronal injury signal(s) in the conditioned medium to induce generation of pro-inflammatory mediators (IL-1β, TNF-α, NO and ROS) that promote neurotoxicity. Employing a unique eukaryotic HSP60-overexpression method, we further demonstrated that extracellular HSP60 acts on microglial LOX-1 to boost the production of pro-inflammatory factors (IL-1β, NO and ROS) in microglia and to propagate neuronal damage. These results indicate that LOX-1 is essential in microglia for promoting an inflammatory response in the presence of soluble neuronal-injury signals such as extracellular HSP60, thereby linking neuroinflammation and neurotoxicity.


PLOS ONE | 2013

Up-Regulation of RACK1 by TGF-β1 Promotes Hepatic Fibrosis in Mice

Dongwei Jia; Fangfang Duan; Peike Peng; Linlin Sun; Xiaojuan Liu; Lan Wang; Weicheng Wu; Yuanyuan Ruan; Jianxin Gu

Liver fibrosis represents the consequences of a sustained wound healing response to chronic liver injury, and activation of quiescent hepatic stellate cells (HSCs) into a myofibroblast-like phenotype is considered as the central event of liver fibrosis. RACK1, the receptor for activated C-kinase 1, is a classical scaffold protein implicated in numerous signaling pathways and cellular processes; however, the role of RACK1 in liver fibrosis is little defined. Herein, we report that RACK1 is up-regulated in activated HSCs in transforming growth factor beta 1 (TGF-β1)-dependent manner both in vitro and in vivo, and TGF-β1 stimulates the expression of RACK1 through NF-κB signaling. Moreover, RACK1 promotes TGF-β1 and platelet-derived growth factor (PDGF)-mediated activation of pro-fibrogenic pathways as well as the differentiation, proliferation and migration of HSCs. Depletion of RACK1 suppresses the progression of TAA-induced liver fibrosis in vivo. In addition, the expression of RACK1 in fibrogenic cells also positively correlates well with the stage of liver fibrosis in clinical cases. Our results suggest RACK1 as a downstream target gene of TGF-β1 involved in the modulation of liver fibrosis progression in vitro and in vivo, and propose a strategy to target RACK1 for liver fibrosis treatment.


Scientific Reports | 2017

Decreased expression of STING predicts poor prognosis in patients with gastric cancer

Shushu Song; Peike Peng; Zhaoqing Tang; Junjie Zhao; Weicheng Wu; Haojie Li; Miaomiao Shao; Lili Li; Caiting Yang; Fangfang Duan; Mingming Zhang; Jie Zhang; Hao Wu; Can Li; Xuefei Wang; Hongshan Wang; Yuanyuan Ruan; Jianxin Gu

STING (stimulator of interferon genes) has recently been found to play an important role in host defenses against virus and intracellular bacteria via the regulation of type-I IFN signaling and innate immunity. Chronic infection with Helicobacter pylori is identified as the strongest risk factor for gastric cancer. Thus, we aim to explore the function of STING signaling in the development of gastric cancer. Immunohistochemistry was used to detect STING expression in 217 gastric cancer patients who underwent surgical resection. STING protein expression was remarkably decreased in tumor tissues compared to non-tumor tissues, and low STING staining intensity was positively correlated with tumor size, tumor invasion depth, lymph mode metastasis, TNM stage, and reduced patients’ survival. Multivariate analysis identified STING as an independent prognostic factor, which could improve the predictive accuracy for overall survival when incorporated into TNM staging system. In vitro studies revealed that knock-down of STING promoted colony formation, viability, migration and invasion of gastric cancer cells, and also led to a defect in cytosolic DNA sensing. Besides, chronic H. pylori infection up-regulated STING expression and activated STING signaling in mice. In conclusion, STING was proposed as a novel independent prognostic factor and potential immunotherapeutic target for gastric cancer.


Apoptosis | 2016

Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen

Haiyan Zhu; Xiaoyun Fang; Dongmei Zhang; Weicheng Wu; Miaomiao Shao; Lan Wang; Jianxin Gu

Abstract Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.


Scientific Reports | 2017

Lectin-like oxidized low-density lipoprotein receptor-1 facilitates metastasis of gastric cancer through driving epithelial-mesenchymal transition and PI3K/Akt/GSK3β activation

Can Li; Jie Zhang; Hao Wu; Lili Li; Caiting Yang; Shushu Song; Peike Peng; Miaomiao Shao; Mingming Zhang; Junjie Zhao; Ran Zhao; Weicheng Wu; Yuanyuan Ruan; Lan Wang; Jianxin Gu

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a pattern recognition receptor that plays a critical role in vascular diseases and host immune response. Recently, our research discovered that LOX-1 could facilitate the uptake of dying cells and cross-presentation of cellular antigen via binding with heat shock proteins, which have a close relationship with gastric neoplasia. Therefore, we speculated that LOX-1 may serve as an oncogene in gastric cancer (GC) development and progression. In this study, through immunohistochemistry staining assay and cancer-related databases, we found that LOX-1 expression was up-regulated in GC tissues and correlated with a poor prognosis in GC patients. The expression of LOX-1 was an independent prognostic factor for OS in GC patients, and the incorporation of LOX-1 with TNM stage is more accurate for predicting prognosis. Additionally, in vitro study by transwell assay and western blot analysis confirmed that LOX-1 could promote the migration and invasion of GC cells by driving epithelial-mesenchymal transition and PI3K/Akt/GSK3β activation. Taken together, we first explored the expression profiles, clinical significance and biological function of LOX-1 in GC, and these data suggest that LOX-1 may represent a promising prognostic biomarker for GC and offer a novel molecular target for GC therapies.


Scientific Reports | 2016

High expression of GFAT1 predicts poor prognosis in patients with pancreatic cancer

Caiting Yang; Peike Peng; Lili Li; Miaomiao Shao; Junjie Zhao; Lan Wang; Fangfang Duan; Shushu Song; Hao Wu; Jie Zhang; Ran Zhao; Dongwei Jia; Mingming Zhang; Weicheng Wu; Can Li; Yefei Rong; Lei Zhang; Yuanyuan Ruan; Jianxin Gu

Pancreatic cancer is one of the most lethal of all types of cancer, with the 5-year survival rate ranging only at 6–7%. The aberrant glucose metabolism is one of the hallmarks of cancer cells, and as a branch of glucose metabolism, hexosamine biosynthesis pathway (HBP) has been reported to play a critical role in the insulin resistance and progression of cancer. Glutamine:fructose-6-phosphate amidotransferase (GFAT1) is the rate-limiting enzyme of the HBP; nevertheless, the prognostic value of GFAT1 in pancreatic cancer remains elusive. In this study, we found that the expression of GFAT1 was increased in pancreatic cancer samples compared to peri-tumor tissues. High expression of GFAT1 was positively associated with lymph node metastasis, pTNM stage and shorter overall survival (OS) in pancreatic cancer patients. GFAT1 was identified as an independent prognosticator for OS, and combining GFAT1 expression with pTNM stage generated a predictive nomogram, which showed better prognostic efficiency for OS in patients with pancreatic cancer. In summary, high GFAT1 expression is identified as an independent predictor of adverse clinical outcome in our small number of pancreatic cancer patients, and the practical prognostic nomogram model may help clinicians in decision making and the design of clinical studies.


Scientific Reports | 2016

Decreased expression of Calpain-9 predicts unfavorable prognosis in patients with gastric cancer

Peike Peng; Weicheng Wu; Junjie Zhao; Shushu Song; Xuefei Wang; Dongwei Jia; Miaomiao Shao; Mingming Zhang; Lili Li; Lan Wang; Fangfang Duan; Ran Zhao; Caiting Yang; Hao Wu; Jie Zhang; Zhenbin Shen; Yuanyuan Ruan; Jianxin Gu

Calpain-8 and calpain-9 belong to the family of calcium-dependent cysteine proteases, which are highly expressed in the stomach. However, the roles of calpain-8 and calpain-9 in gastric tumorigenesis remain little understood. Herein, we demonstrated that calpain-9 was generally decreased in gastric cancer cell lines and primary tumor tissues, while calpain-8 expression was not significantly altered. Calpain-9, but not calpain-8, induced cell cycle arrest in the G1 phase and cellular apoptosis in vitro, and it attenuated the growth of subcutaneous tumor xenografts in vivo. Low expression of calpain-9 was positively associated with male sex, late T stage, lymph node metastasis, and advanced TNM stage. Further analysis identified calpain-9 as an independent prognostic factor for poor prognosis, and combining calpain-9 with TNM stage generated a better predictive model for patient outcomes. In conclusion, calpain-9 is a tumor suppressor that can be regarded as a potential prognosis indicator for clinical outcomes in gastric cancer.


Oncotarget | 2016

Loss of GFAT1 promotes epithelial-to-mesenchymal transition and predicts unfavorable prognosis in gastric cancer

Fangfang Duan; Dongwei Jia; Junjie Zhao; Weicheng Wu; Lingqiang Min; Shushu Song; Hao Wu; Lan Wang; Hongshan Wang; Yuanyuan Ruan; Jianxin Gu

Gastric cancer remains the third leading cause of cancer-related mortality worldwide, and invasion and metastasis of gastric cancer represent the major reason for its poor prognosis. Glutamine: fructose-6-phosphate amidotransferase 1 (GFAT1) is the first and rate-limiting enzyme of hexosamine biosynthesis pathway (HBP). Nevertheless, the role of GFAT1 in gastric cancer is little investigated. In this study, we found that the expression of GFAT1 was decreased in gastric cancer. Low expression of GFAT1 was positively associated with vessel invasion, late T stage, lymph node metastasis, distant metastasis, advanced TNM stage and poor prognosis in patients with gastric cancer. Furthermore, in vitro and in vivo studies revealed that down-regulation of GFAT1 promoted epithelial-to-mesenchymal transition (EMT) and invasive activities in gastric cancer cells through inducing the expression of TGF-β1. The GFAT1 expression also significantly correlated with EMT-related factors in gastric cancer patients. Together, these findings indicate that GFAT1 functions as a novel suppressor of EMT and tumor metastasis in gastric cancer.


Oncotarget | 2017

High expression of GFAT1 predicts unfavorable prognosis in patients with hepatocellular carcinoma

Lili Li; Miaomiao Shao; Peike Peng; Caiting Yang; Shushu Song; Fangfang Duan; Dongwei Jia; Mingming Zhang; Junjie Zhao; Ran Zhao; Weicheng Wu; Lan Wang; Can Li; Hao Wu; Jie Zhang; Xin Wu; Yuanyuan Ruan; Jianxin Gu

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. As a branch of glucose metabolism, hexosamine biosynthesis pathway (HBP) has been reported to play a critical role in the insulin resistance and progression of cancer. Glutamine:fructose-6-phosphate amidotransferase (GFAT) is the rate-limiting enzyme of the HBP; nevertheless, the prognostic value of GFAT1 in HCC remains elusive. In this study, we found that high expression of GFAT1 was significantly associated with serum alpha-fetoprotein (AFP), serum alanine aminotransferase (ALT), tumor size, tumor encapsulation, T stage and TNM stage. High GFAT1 expression was identified as an independent prognostic factor which predicted poor overall survival (OS) and recurrence-free survival (RFS) in HCC patients. Incorporation of GFAT1 expression could improve the prognostic accuracy of traditional TNM stage system. Integration of GFAT1 expression with other independent prognosticators generated a predictive nomogram, which showed better prognostic efficiency for OS and RFS in HCC patients. In vitro studies also revealed that GFAT1 promoted the proliferation, cell cycle progression, migration and invasion of HCC cells. In conclusion, GFAT1 is a potential prognostic biomarker for overall survival and recurrence-free survival of HCC patients after surgery.


Biochemical and Biophysical Research Communications | 2015

PKCα promotes generation of reactive oxygen species via DUOX2 in hepatocellular carcinoma.

Jiajun Wang; Miaomiao Shao; Min Liu; Peike Peng; Lili Li; Weicheng Wu; Lan Wang; Fangfang Duan; Mingming Zhang; Shushu Song; Dongwei Jia; Yuanyuan Ruan; Jianxin Gu

Hepatocellular carcinoma (HCC) remains the second leading cause of cancer-related death worldwide, and elevated rates of reactive oxygen species (ROS) have long been considered as a hallmark of almost all types of cancer including HCC. Protein kinase C alpha (PKCα), a serine/threonine kinase among conventional PKC family, is recognized as a major player in signal transduction and tumor progression. Overexpression of PKCα is commonly observed in human HCC and associated with its poor prognosis. However, how PKCα is involved in hepatocellular carcinogenesis remains not fully understood. In this study, we found that among the members of conventional PKC family, PKCα, but not PKCβI or βII, promoted ROS production in HCC cells. PKCα stimulated generation of ROS by up-regulating DUOX2 at post-transcriptional level. Depletion of DUOX2 abrogated PKCα-induced activation of AKT/MAPK pathways as well as cell proliferation, migration and invasion in HCC cells. Moreover, the expression of DUOX2 and PKCα was well positively correlated in both HCC cell lines and patient samples. Collectively, our findings demonstrate that PKCα plays a critical role in HCC development by inducing DUOX2 expression and ROS generation, and propose a strategy to target PKCα/DUOX2 as a potential adjuvant therapy for HCC treatment.

Collaboration


Dive into the Weicheng Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge