Weiguang Wang
Hohai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Weiguang Wang.
Stochastic Environmental Research and Risk Assessment | 2013
Weiguang Wang; Quanxi Shao; Tao Yang; Shizhang Peng; Zhongbo Yu; John Taylor; Wanqiu Xing; Cuiping Zhao; Fengchao Sun
Spatiotemporal changes in climatic extremes in the Yellow River Basin from 1959 to 2008 were investigated on the basis of a suite of 27 climatic indices derived from daily temperature and precipitation data from 75 meteorological stations with the help of the Mann–Kendall test, linear regression method and GIS technique. Furthermore, the changes in the probability distribution of the extreme indices were examined. The results indicate: (1) The whole basin is dominated by significant increase in the frequency of warm days and warm nights, and dominated by significant decrease in the frequency of cold days and cold nights. Although trends in absolute temperature indices show less spatial coherence compared with that in the percentile-based temperature indices, overall increasing trends can be found in Max Tmax (TXx), Min Tmax (TXn), Max Tmin (TNx) and Min Tmin (TNn). (2) Although the spatial patterns and the number of stations with significant changes for threshold and duration temperature indices are also not identical, general positive trends in warm indices (i.e., summer days (SU25), tropical nights (TR20), warm spell duration indicator and growing season length) and negative trends in cold indices (i.e., frost days, ice days and cold spell duration indicator) can be found in the basin. Annual nighttime temperature has increased at a faster rate than that in daytime temperature, leading to obvious decrease in diurnal temperature range. (3) The changes in precipitation indices are much weaker and less spatially coherent compared with these of temperature indices. For all precipitation indices, only few stations are characterized by significantly change in extreme precipitation, and their spatial patterns are always characterized by irregular and insignificant positive and negative changes. However, generally, changes in precipitation extremes present drying trends, although most of the changes are insignificant. (4) Results at seasonal scale show that warming trends occur for all seasons, particularly in winter. Different from that in other three seasons, general positive trends in max 1-day precipitation (Rx1DAY) and max 5-day precipitation (Rx5DAY) are found in winter. Analysis of changes in probability distributions of indices for 1959–1983 and 1984–2008 indicate a remarkable shift toward warmer condition and a less pronounced tendency toward drier condition during the past decades. The results can provide beneficial reference to water resource and eco-environment management strategies in the Yellow River Basin for associated policymakers and stakeholders.
Stochastic Environmental Research and Risk Assessment | 2012
Xiaoyan Wang; Tao Yang; Quanxi Shao; Kumud Acharya; Weiguang Wang; Zhongbo Yu
Reliable projections of extremes at finer spatial scales are important in assessing the potential impacts of climate change on societal and natural systems, particularly for elevated and cold regions in the Tibetan Plateau. This paper presents future projections of extremes of daily precipitation and temperature, under different future scenarios in the headwater catchment of Yellow River basin over the 21st century, using the statistical downscaling model (SDSM). The results indicate that: (1) although the mean temperature was simulated perfectly, followed by monthly pan evaporation, the skill scores in simulating extreme indices of precipitation are inadequate; (2) The inter-annual variabilities for most extreme indices were underestimated, although the model could reproduce the extreme temperatures well. In fact, the simulation of extreme indices for precipitation and evaporation were not satisfactory in many cases. (3) In future period from 2011 to 2100, increases in the temperature and evaporation indices are projected under a range of climate scenarios, although decreasing mean and maximum precipitation are found in summer during 2020s. The findings of this work will contribute toward a better understanding of future climate changes for this unique region.
Journal of Hydrometeorology | 2013
Bin Yong; Liliang Ren; Yang Hong; Jonathan J. Gourley; Xi Chen; Jinwei Dong; Weiguang Wang; Yan Shen; Jill Hardy
AbstractHydrological processes in most semiarid regions on Earth have been changing under the impacts of climate change, human activities, or combinations of the two. This paper first presents a trend analysis of the spatiotemporal changes in water resources and then diagnoses their underlying atmospheric and socioeconomic causes over 10 catchments in the Laoha basin, a typical semiarid zone of northeast China. The impacts of climate variability and human activities on streamflow change were quantitatively evaluated by the VIC (Variable Infiltration Capacity) model. First, results indicate that six out of the 10 studied catchments have statistically significant downward trends in annual streamflow; however, there is no significant change of annual precipitation for all catchments. Two abrupt changes of annual streamflow at 1979 and 1998 are identified for the four largest catchments. Second, the Laoha basin generally experienced three evident dry–wet pattern switches during the past 50 years. Furthermore,...
Stochastic Environmental Research and Risk Assessment | 2015
Weiguang Wang; Jiande Wei; Quanxi Shao; Wanqiu Xing; Bin Yong; Zhongbo Yu; Xiyun Jiao
Climate change in North China would result in significant changes in temperature, precipitation and their spatial/temporal distributions. Consequently, these induced changes will have profound effects on the hydrological cycle and water resources in both agricultural and natural ecosystems. Panjiakou reservoir in the middle Luanhe River basin—a tributary of the Haihe River basin—is one of the important sources of water for industrial and agricultural development in Beijing, Tianjin and Hebei province, China. Any significant change in the magnitude and/or timing of runoff from the reservoir induced by changes in climatic variables would have significant implication for the economic prosperity in North China. This paper investigates the impacts of climate change on hydrological processes in the Luanhe River basin as follows. Firstly, spatial and temporal patterns of precipitation, temperature and runoff at both annual and seasonal scales from 1957 to 2000 in the Luanhe River basin are analyzed using Mann–Kendall trend analysis, linear regression methods and inverse distance weighted interpolation. For the impact study, four Global Climate Models (GCMs) (named CSIRO, HadCM3, CNRM and GFDL) were used to produce precipitation and temperature data under A2 scenario by mean of a widely used quantile–quantile transformation. Projected meteorological variables were used to force a two-parameter hydrologic model to simulate the hydrological response to climate change in the future (2021–2050). Moreover, a sensitivity analysis is conducted to assess how precipitation and temperature affect the runoff. Results suggested that most part of the Luanhe River basin was dominated by significant increasing trends of temperature and no significant trends of precipitation in annual and seasonal scale during the past decades. Annual, spring and autumn runoffs present significant decreasing trends in the Panjiakou reservoir basin. Meanwhile, runoff is more strongly related to precipitation than to temperature. All GCMs projected precipitation and temperature series after bias correction indicated increasing temperature and increasing precipitation trends for the period 2021–2050 except that CNRM showed a slight decreasing trend in precipitation. Great enhancements can be found in projected runoff except CNRM by driving the two-parameter water balance model. The study provides valuable information on the assessment of the impact of the climate change on water resources in the Luanhe River basin as well for allocating and designing water resources projects.
Paddy and Water Environment | 2015
Yufeng Luo; Yunlu Jiang; Shizhang Peng; Yuanlai Cui; Shahbaz Khan; Yalong Li; Weiguang Wang
An ex post facto investigation of the effects of climate change on rice production over the past few decades will be helpful for planning future climate change. Here, a simulation study was carried out to evaluate the impacts of climate change on the yields, irrigation requirements, and water productivity of rice in Kaifeng, China from 1951 to 2010. The rice growth model ORYZA 2000 was adopted to simulate the yields and irrigation requirements (IR); then, water productivity in terms of irrigation water (WPI), evapotranspiration (WPET), and total water use (WPI+R) was calculated, and the Mann–Kendall test was employed to detect the trends in the variables. The reduction in yield was caused by the shortened GSL, increased temperature, and decreased hours of sunshine. The decreased seasonal IR resulted from both the increased rainfall and decreased ETc, while the latter played a dominate role. The WPI seemed not sensitivity to climate change, while WPET and WPI+R were strongly linked with climate change. More productive crop variety or changing the planting schedule could avoid the negative effects posed by global warming, stilling, and dimming.
Archives of Agronomy and Soil Science | 2015
Xiaoli Gao; Shizhang Peng; Junzeng Xu; Shihong Yang; Weiguang Wang
Proper methods for estimating reference evapotranspiration (ET0) using limited climatic data are critical, if complete weather data are unavailable. Based on the weather data of 19 stations in Guizhou Province, China, several simple methods for ET0 estimation, including the Hargreaves, Priestley–Taylor, Irmak–Allen, McCloud, Turk, and Valiantzas methods, were involved in comparison with the standard FAO-56 Penman–Monteith (PM) method. The Turk equation performs well for estimating ET0 in humid locations. Both the Turk method and the Valiantzas method initially performed acceptably with mean root-mean-square difference (RMSD) of 0.1472 and 0.1282 mm d−1, respectively, with only requiring parameters of temperature (T), relative humidity (RH), and sunshine duration (n). The corresponding calibration formulas to Turk and Valiantzas method were suggested as the most appropriate method for ET0 estimation with the RMSD of 0.0098 and 0.0250 mm d−1, respectively. The local calibrated Hargreaves–Samani method performed well and can be applied as the substitute of FAO-56 PM method under the condition that only the daily mean, maximum, and minimum temperatures were available, and local calibrated McCloud method was acceptable if only the mean temperature was available.
Scientific Reports | 2016
Wanqiu Xing; Weiguang Wang; Quanxi Shao; Zhongbo Yu; Tao Yang; Jianyu Fu
Evidence that the pan evaporation or reference evapotranspiration (ET0) as the indicator of atmospheric evaporation capability have decreased along with the continuous increase in temperature over the past decades (coined as “evaporation paradox”) has been reported worldwide. Here, we provide a nationwide investigation of spatiotemporal change of ET0 using meteorological data from 602 stations with the updated data (1961–2011). In addition, we explore the trigger mechanism by quantitative assessment on the contribution of climatic factors to ET0 change based on a differential equation method. In despite of different shift points regionally, our results suggest that the ET0 generally present decadal variations rather than monotonic response to climate change reported in previous studies. The significant decrease in net radiation dominate the decrease in ET0 before early 1990s in southern regions, while observed near-surface wind speed is the primary contributor to the variations of ET0 for the rest regions during the same periods. The enhancements of atmospheric evaporation capability after early 1990s are driven primarily by recent relative humidity limitation in China. From a continental scale view, as highly correlating with to Pacific Decadal Oscillation, the shift behaviors of ET0 is likely an episodic phenomenon of the ocean-atmosphere interaction in earth.
Journal of Irrigation and Drainage Engineering-asce | 2012
Yufeng Luo; Yunlu Jiang; Shizhang Peng; Shahbaz Khan; Xueliang Cai; Weiguang Wang; Xiyun Jiao
AbstractWeather data measured in urban areas are generally more easily available than those in rural areas. If the urban weather data are used to calculate the reference crop evapotranspiration (ET0) for rural irrigation management or spatial and temporal trend analysis, the results may be biased because of the differences in weather variables. We collected daily data for mean, maximum, and minimum temperatures; relative humidity; average wind speed; and sunshine duration from two stations: Kaifeng Station in the City of Kaifeng and Huibei Station in the nearby irrigation scheme for 1984–2009. ET0 for both stations were calculated using the FAO-56 Penman-Monteith method and then compared. The results indicated that the difference in daily ET0 was remarkable [with relative error (RE) of 52.6%], the difference between monthly average ET0 increased gradually during the last three decades and the temporal trends in annual average daily ET0 were opposite. There were significant differences in ETC (with RE of 3...
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2016
Wanqiu Xing; Weiguang Wang; Quanxi Shao; John Taylor; Yimin Ding; Jianyu Fu; Xiaozhou Feng
ABSTRACT Future changes in reference evapotranspiration (ET0) are of increasing importance in assessing the potential impacts on hydrology and water resources systems of more pronounced climate change. This study assesses the applicability of the Statistical Downscaling Model (SDSM) in projecting ET0, and investigates the seasonal and spatial patterns of future ET0 based on general circulation models (GCMs) across the Haihe River Basin. The results indicate that SDSM can downscale ET0 well in term of different basin-averaged measures for the HadCM3 and CGCM3 GCMs. HadCM3 has a much superior capability in capturing inter-annual variability compared to CGCM3 and thus is chosen as the sole model to assess the changes in future ET0. There are three homogeneous sub-regions of the Haihe River Basin: Northwest, Northeast and Southeast. Change points are detected at around 2050 and 2080 under the A2 and B2 scenarios, respectively. The Northwest is revealed to have a slight to strong increase in ET0, while the Northeast and the Southeast tend to experience a pattern change from decrease to increase in ET0. EDITOR M.C. Acreman ASSOCIATE EDITOR J. Thompson
Archives of Agronomy and Soil Science | 2013
Junzeng Xu; Shizhang Peng; Weiguang Wang; Shihong Yang; Qi Wei; Yufeng Luo
Prediction of daily reference evapotranspiration (ET 0) is the basis of real-time irrigation scheduling. A multiple regression method for ET 0 prediction based on its seasonal variation pattern and public weather forecast data was presented for application in East China. The forecasted maximum temperature (T max), minimum temperature (T min) and weather condition index (WCI) were adopted to calculate the correction coefficient by multilinear regression under five time-division regimes (10 days, monthly, seasonal, semi-annual and annual). The multiple regression method was tested for its feasibility for ET 0 prediction using forecasted weather data as the input, and the monthly regime was selected as the most suitable. Average absolute error (AAE) and root mean square error (RMSE) were 0.395 and 0.522 mm d−1, respectively. ET 0 prediction errors increased linearly with the increase in temperature prediction error. A temperature error within 3 K is likely to result in acceptable ET 0 predictions, with AAE and average absolute relative error (AARE) <0.142 mm d−1 and 5.8%, respectively. However, one rank error in WCI results in a much larger error in ET 0 prediction due to the high sensitivity of the correction coefficient to WCI and the large relative error in WCI caused by one rank deviation. Improving the accuracy of weather forecasts, especially for WCI prediction, is helpful in obtaining better estimations of ET 0 based on public weather data.
Collaboration
Dive into the Weiguang Wang's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs