Weiguo Zhang
Third Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Weiguo Zhang.
Journal of Anatomy | 2004
Shaoxiang Zhang; Pheng-Ann Heng; Zheng-Jin Liu; Li-Wen Tan; Mingguo Qiu; Qi-Yu Li; Rong-Xia Liao; Kai Li; Gao-Yu Cui; Yan-Li Guo; Xiao‐Ping Yang; Guang-Jiu Liu; Jing‐Lu Shan; Ji‐Jun Liu; Weiguo Zhang; Xian‐Hong Chen; Jinhua Chen; Jian Wang; Wei Chen; Ming Lu; Jian You; Xue‐Li Pang; Hong Xiao; Yongming Xie; Jack C. Y. Cheng
We report the availability of a digitized Chinese male and a digitzed Chinese female typical of the population and with no obvious abnormalities. The embalming and milling procedures incorporate three technical improvements over earlier digitized cadavers. Vascular perfusion with coloured gelatin was performed to facilitate blood vessel identification. Embalmed cadavers were embedded in gelatin and cryosectioned whole so as to avoid section loss resulting from cutting the body into smaller pieces. Milling performed at −25 °C prevented small structures (e.g. teeth, concha nasalis and articular cartilage) from falling off from the milling surface. The male image set (.tiff images each of 36 Mb) has a section resolution of 3072 × 2048 pixels (∼170 µm, the accompanying magnetic resonance imaging and computer tomography data have a resolution of 512 × 512, i.e. ∼440 µm). The Chinese Visible Human male and female datasets are available at http://www.chinesevisiblehuman.com. (The male is 90.65 Gb and female 131.04 Gb). MPEG videos of direct records of real‐time volume rendering are at: http://www.cse.cuhk.edu.hk/~crc
Cancer Imaging | 2015
Xiaoguang Li; Yongshan Zhu; Houyi Kang; Yulong Zhang; Huaping Liang; Sumei Wang; Weiguo Zhang
BackgroundDynamic contrast-enhanced MRI (DCE-MRI) estimates vascular permeability of brain tumors, and susceptibility-weighted imaging (SWI) may demonstrate tumor vascularity by intratumoral susceptibility signals (ITSS). This study assessed volume transfer constant (Ktrans) accuracy, the volume of extravascular extracellular space (EES) per unit volume of tissue (Ve) derived from DCE-MRI, and the degree of ITSS in glioma grading.MethodsThirty-two patients with different glioma grades were enrolled in this retrospective study. Patients underwent DCE-MRI and non-contrast enhanced SWI by three-tesla scanning. Ktrans values, Ve, and the degree of ITSS in glioma were compared. Receiver operating characteristic (ROC) curve analysis determined diagnostic performances of Ktrans and Ve in glioma grading, and Spearman’s correlation analysis determined the associations between Ktrans, Ve, ITSS, and tumor grade.ResultsKtrans and Ve values were significantly different between low grade gliomas (LGGs) and both high grade gliomas (HGGs) and grade II, III and IV gliomas (P < 0.01). The degree of ITSS of LGGs was lower than HGGs (P < 0.01), and the ITSS of grade II gliomas was lower than grade III or IV gliomas. Ktrans and Ve were correlated with glioma grade (P < 0.01), while ITSS was moderately correlated (P < 0.01). Ktrans values were moderately correlated with ITSS in the same segments (P < 0.01).ConclusionKtrans and Ve values, and ITSS helped distinguish the differences between LGGs and HGGs and between grade II, III and IV gliomas. There was a moderate correlation between Ktrans and ITSS in the same tumor segments.
Brain Imaging and Behavior | 2014
Kunlin Xiong; Yongshan Zhu; Weiguo Zhang
Concussion is the most common form of traumatic brain injury (TBI), but diagnosis remains controversial because the brain appears quite normal in conventional computed tomography and magnetic resonance imaging (MRI). These conventional tools are not sensitive enough to detect diffuse traumatic axonal injury, and cannot depict aberrations in mild TBIs. Advanced MRI modalities including diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS), make it possible to detect brain injuries in TBI. The purpose of this review is to provide the latest information regarding the visualization and quantification of important abnormalities in TBI and new insights into their clinical significance. Advanced imaging modalities allow the discovery of biomarkers of injury and the detection of changes in brain injury over time. Such tools will likely be used to evaluate treatment efficacy in research. Combining multiple imaging modalities would not only provide greater insight into the underlying physiological changes in TBI, but also improve diagnostic accuracy in predicting outcomes. In this review we present evidence of brain abnormalities in TBI based on investigations using MRI, including DTI and MRS. Our review provides a summary of some of the important studies published from 2002 to 2012 on the topic of MRI findings in head trauma. With the growing realization that even mild head injury can lead to neurocognitive deficits, medical imaging has assumed preeminence for detecting abnormalities associated with TBI. Advanced MRI modalities such as DTI and MRS have an important role in the diagnosis of lesions for TBI patients.
The International Journal of Biochemistry & Cell Biology | 2013
Jingqin Fang; Xiao Chen; Letian Zhang; Jinhua Chen; Yi Liang; Xue Li; Jianbo Xiang; Lili Wang; Guangkuo Guo; Bo Zhang; Weiguo Zhang
P2X7 receptor (P2X7R) has been shown to mediate an anticancer effect via apoptosis in different types of cancer. However, whether P2X7R exerts a promoting or suppressive effect on brain glioma is still a controversial issue and its underlying mechanism remains unknown. We showed here that P2X7R suppression exerted a pro-growth effect on glioma through directly promoting cells proliferation and pro-angiogenesis, which was associated with epidermal growth factor receptor (EGFR) signaling. The P2X7R was markedly downregulated by cells exposure to the P2X7R antagonist, brilliant blue G (BBG), moreover, the cells proliferation was enhanced in a dose-dependent manner and the expression of EGFR or p-EGFR protein was significantly upregulated. By constructing C6 cells with reduced expression of P2X7R using shRNA, we also demonstrated strong upregulation in cells proliferation and EGFR/p-EGFR expression. However, this effect of BBG was reversed in the presence of gefitinib or suramin. Magnetic resonance imaging and computed tomography perfusion showed that the BBG or P2X7R shRNA promoted the tumor growth by about 40% and 50%, respectively, and significantly increased angiogenesis. Nissl and Ki-67 staining also confirmed that BBG or P2X7R shRNA notably increased the tumor growth. More importantly, either BBG or P2X7R shRNA could markedly upregulated the expression of EGFR, p-EGFR, HIF-1α and VEGF in glioma cells. In conclusion, P2X7R suppression exerts a promoting effect on glioma growth, which is likely to be related to upregulated EGFR, HIF-1α and VEGF expression. These findings provide important clues to the molecular basis of anticancer effect of targeting purinergic receptors.
Brain Research | 2014
Kunlin Xiong; Yongshan Zhu; Yulong Zhang; Zhiyong Yin; Jingna Zhang; Mingguo Qiu; Weiguo Zhang
The aim of this study is to explore the white matter structure integrity in patients with mild traumatic brain injury (mTBI) using diffusion tensor imaging (DTI), and to analyze the relationship between the white matter structure integrity and cognitive impairment of patients with mTBI. Twenty-five patients with mTBI and 25 healthy control subjects were studied with conventional MR imaging and diffusion tensor imaging. Fractional anisotropy (FA) and mean diffusivity (MD) maps of patients with mTBI were calculated and compared, with these control maps using tract-based spatial statistics (TBSS). Significantly lower fractional anisotropy was found in patients in the uncinate fasciculus, superior longitudinal fasciculus, inferior longitudinal fasciculus, and internal capsule. Mean diffusivity was significantly elevated in the body of corpus callosum, uncinate fasciculus, superior longitudinal fasciculus, and internal capsule in the mTBI group compared with the control group (P<0.05). The mTBI group showed a significant negative correlation between the elevated mean diffusivity of the uncinate fasciculus and the working memory index (WMI) (R(2)=0.51, P<0.05), and the internal capsule of MD values was significantly negatively related to processing speed index (PSI) (R(2)=0.45, P<0.05). There was a positive correlation between the FA value of the uncinate fasciculus and Mini Mental State Examination (MMSE) in the mTBI patient group (R(2)=0.36, P<0.05). TBSS analysis of DTI suggests that patients with mTBI have focal axonal injury, and the pathophysiology is significantly related to the MMSE and IQ of mTBI patients. Diffusion tensor imaging can be a powerful technique for in vivo detection of mTBI, and can help in the diagnosis of patients with mTBI.
Surgical and Radiologic Anatomy | 2004
Qi-Yu Li; Shaoxiang Zhang; Zheng-Jin Liu; Li-Wen Tan; Mingguo Qiu; Kai Li; Gao-Yu Cui; Yan-Li Guo; Xiao‐Ping Yang; Weiguo Zhang; Xian‐Hong Chen; Jinhua Chen; S.-Y. Ding; Wei Chen; J. You; Yilei Wang; Junhui Deng; Zesheng Tang
To build a digitized visible model of the parapharyngeal space of the Chinese Visible Human and to provide a sectional anatomic basis for radiological and clinical diagnosis of the parapharyngeal space, sectional anatomy data of the parapharyngeal space were selected from the Chinese Visible Human male and female to compare with MR imaging findings in the axial planes. From these data the parapharyngeal space and surrounding structures were segmented. They were then reconstructed in three dimensions on PC. In the axial planes of the sectional anatomy and MR imaging, the shape, content and relations of the parapharyngeal space were clearly displayed and the dominant plane for showing the parapharyngeal space was elicited. The three-dimensional reconstructed images displayed perfectly the anatomic relationships of the parapharyngeal space, parotid, muscles, mandible and vessels. All reconstructed structures can be displayed singly, in groups or as a whole; any diameter or angle of the reconstructed structures can be easily measured. The Chinese Visible Human male and female data set can provide complete and accurate data. The digitized model of the parapharyngeal space and its surroundings offers unique insights into the complex anatomy of the area, providing morphologic data for imaging diagnosis and surgery of the parapharyngeal space.
British Journal of Radiology | 2015
Xue Li; J Chen; Letian Zhang; Heng Liu; S Wang; X Chen; J Fang; Weiguo Zhang
OBJECTIVE To analyse the pattern and factors that influence the incidence of adverse drug reactions (ADRs) induced by non-ionic iodinated contrast media and to evaluate their safety profiles. METHODS Data from 109,255 cases who underwent enhanced CT examination from 1 January 2008 to 31 August 2013 were analysed. ADRs were classified according to the criteria issued by the American College of Radiology and the Chinese Society of Radiology. RESULTS A total of 375 (0.34%) patients had ADRs, including 281 mild (0.26%); 80 moderate (0.07%); and 14 severe (0.01%) ADRs; no death was found. 302 (80.53%) of the ADRs occurred within 15 min after examination. Patients aged 40-49 years (204 cases, 0.43%; p < 0.01) or who underwent coronary CT angiography (93 cases, 0.61%; p < 0.01) were at a higher risk of ADRs. Female patients (180 cases, 0.40%; p < 0.01) or outpatients had significantly higher incidence rates of ADRs. The symptoms and signs of most of the ADRs were resolved spontaneously within 24 h after appropriate treatment without sequelae. CONCLUSION The occurrence of ADRs is caused by the combined effects of multiple factors. The ADRs induced by non-ionic iodinated contrast media are mainly mild ones, while moderate or severe ADRs are relatively rare, suggesting that enhanced CT examination with non-ionic iodinated contrast media is highly safe, and severe adverse events will seldom occur under appropriate care. ADVANCES IN KNOWLEDGE The study included 109,255 patients enrolled in various types of enhanced CT examinations, which could reflect ADR conditions and regulations in Chinese population accurately and reliably.
Acta Radiologica | 2013
Xiao Chen; Jun Yin; Xiaoning Wu; Ran Li; Jingqin Fang; Rong Chen; Bo Zhang; Weiguo Zhang
Background Increasing evidence suggests that endothelial progenitor cells (EPCs), a subgroup of bone marrow hematopoietic stromal cells, play a critical role in neovascularization and tissue repair. Purpose To explore the effect of exogenous EPCs on the cerebral blood perfusion and microvessels in the injured region in rat model with traumatic brain injury (TBI). Material and Methods: EPCs were collected from the spleens of healthy Sprague-Dawley rats. Fifty-four Sprague-Dawley rats were randomly divided into six groups. The controlled cortical impact TBI was performed. Spleen-derived exogenous EPCs labeled with superparamagnetic iron oxide (SPIO) (SPIO-EPCs) were transplanted into the blood by tail vein of rats at 6 and 12 h after TBI, respectively. Magnetic resonance imaging (MRI) and computed tomography perfusion imaging were performed at various time points. Microvascular density was determined by immunohistochemistry. Results In SPIO-EPCs group, patchlike hypointensities were detected in the injured region at 24 h after transplantation, and the range of hypointensities tended to expand gradually over time on MRI, which was confirmed by Prussian blue staining. Computed tomography perfusion imaging parameters were gradually developed from hyperperfusion to normal, while, microvascular density was gradually increased during 72 to 168 h after injury. The values of these indices in SPIO-EPCs group were significantly lower than those in SPIO-alone group at the same time point, but no significant differences were found in different time groups. Conclusion The intravenously transplanted EPCs diminish the brain injury through restoring cerebral blood perfusion and increasing the cerebral microvasculature in the injured region in rat model with TBI.
Cancer Biology & Therapy | 2015
Jingqin Fang; Xiao Chen; Shunan Wang; Tian Xie; Xuesong Du; Heng Liu; Sumei Wang; Xue Li; Jinhua Chen; Bo Zhang; Huaping Liang; Yizeng Yang; Weiguo Zhang
In order to use endothelial progenitor cells (EPCs) as a therapeutic and imaging probe to overcome antiangiogenic resistance for gliomas, how to enhance proliferation and targeting ability of transplanted EPCs is a high priority. Here, we confirmed, for the first time, the expression of P2X7 receptors in rat spleen-derived EPCs. Activation of P2X7 receptors in EPCs by BzATP promoted cells proliferation and migration, rather than apoptosis. In vivo, the homing of transplanted EPCs after long-term suppression of P2X7 receptors by persistent BBG stimulation was evaluated by MRI, immunohistochemistry and flow cytometry. Compared to the group without BBG treatment, less transplanted EPCs homed to gliomas in the group with BBG treatment, especially integrated into the vessels containing tumor-derived endothelial cells in gliomas. Moreover, western blot showed that CXCL1 expression was downregulated in gliomas with BBG treatment, which meant P2X7 receptors suppression inhibited the homing of EPCs to gliomas through down-regulation of CXCLl expression. Further, effects of P2X7 receptors on C6 glioma cells or gliomas were evaluated at the same dose of BzATP or BBG used in EPCs experiments in vitro and in vivo. MTT assay and MRI revealed that P2X7 receptors exerted no significant promoting effect on C6 glioma cells proliferation, gliomas growth and angiogenesis. Taken together, our findings imply the possibility of promoting proliferation and targeting ability of transplanted EPCs to brain gliomas in vivo through P2X7 receptors, which may provide new perspectives on application of EPCs as a therapeutic and imaging probe to overcome antiangiogenic resistance for gliomas.
American Journal of Neuroradiology | 2016
H.-Y. Kang; H.-L. Xiao; J.-H. Chen; Y. Tan; X. Chen; T. Xie; J.-Q. Fang; S. Wang; Yizeng Yang; Weiguo Zhang
BACKGROUND AND PURPOSE: Vascular proliferation is a major criterion for grading gliomas on the basis of histology. Relative cerebral blood volume can provide pathophysiologic information about glioma grading. Vessel size imaging, in some animals, can be used to estimate the microvascular caliber of a glioma, but its clinical use remains unclear. Herein, we aimed to compare the predictive power of relative cerebral blood volume and vessel size imaging in glioma grading, with grading based on histology. MATERIALS AND METHODS: Seventy patients with glioma participated in the study; 30 patients underwent MR perfusion imaging with a spin-echo sequence and vessel size imaging with a gradient-echo and spin-echo sequence successively at 24-hour intervals before surgery. We analyzed the vessel size imaging values and relative cerebral blood volume of differently graded gliomas. The microvessel parameters were histologically evaluated and compared with those on MR imaging. The cutoff values of vessel size imaging and relative cerebral blood volume obtained from receiver operating characteristic curve analyses were used to predict glioma grading in another 40 patients. RESULTS: Vessel size imaging values and relative cerebral blood volume were both increased in high-grade gliomas compared with low-grade gliomas (P < .01). Moreover, vessel size imaging values had higher specificity and sensitivity in differentiating high-grade from low-grade gliomas compared with relative cerebral blood volume. In addition, a significant correlation was observed between vessel size imaging values and microvessel diameters (r > 0.8, P < .05) and between relative cerebral blood volume and microvessel area (r = 0.6579, P < .05). Most important, the use of vessel size imaging cutoff values to predict glioma grading was more accurate (100%) than use of relative cerebral blood volume (85%) values. CONCLUSIONS: Vessel size imaging can provide more accurate information on glioma grading and may serve as an effective biomarker for the prognosis of patients with gliomas.