Weijian Zhou
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Weijian Zhou.
Scientific Reports | 2012
Zhisheng An; Steven M. Colman; Weijian Zhou; Xiaoqiang Li; Eric Brown; A. J. Timothy Jull; Yanjun Cai; Yongsong Huang; Xuefeng Lu; Hong Chang; Yougui Song; Youbin Sun; Hai Xu; Weiguo Liu; Zhangdong Jin; Xiaodong Liu; Peng Cheng; Yu Liu; Li Ai; Xiangzhong Li; Xiuju Liu; Libin Yan; Zhengguo Shi; Xulong Wang; Feng Wu; Xiaoke Qiang; Jibao Dong; Fengyan Lu; Xinwen Xu
Two atmospheric circulation systems, the mid-latitude Westerlies and the Asian summer monsoon (ASM), play key roles in northern-hemisphere climatic changes. However, the variability of the Westerlies in Asia and their relationship to the ASM remain unclear. Here, we present the longest and highest-resolution drill core from Lake Qinghai on the northeastern Tibetan Plateau (TP), which uniquely records the variability of both the Westerlies and the ASM since 32 ka, reflecting the interplay of these two systems. These records document the anti-phase relationship of the Westerlies and the ASM for both glacial-interglacial and glacial millennial timescales. During the last glaciation, the influence of the Westerlies dominated; prominent dust-rich intervals, correlated with Heinrich events, reflect intensified Westerlies linked to northern high-latitude climate. During the Holocene, the dominant ASM circulation, punctuated by weak events, indicates linkages of the ASM to orbital forcing, North Atlantic abrupt events, and perhaps solar activity changes.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Gehui Wang; Renyi Zhang; Mario E. Gomez; Lingxiao Yang; Misti L. Zamora; Min Hu; Yun Lin; Jianfei Peng; Song Guo; Jingjing Meng; Jianjun Li; Chunlei Cheng; Tafeng Hu; Yanqin Ren; Yuesi Wang; Jian Gao; Junji Cao; Zhisheng An; Weijian Zhou; Guohui Li; Jiayuan Wang; Pengfei Tian; Wilmarie Marrero-Ortiz; Jeremiah Secrest; Zhuofei Du; Jing Zheng; Dongjie Shang; Limin Zeng; Min Shao; Weigang Wang
Significance Exceedingly high levels of fine particulate matter (PM) occur frequently in China, but the mechanism of severe haze formation remains unclear. From atmospheric measurements in two Chinese megacities and laboratory experiments, we show that the oxidation of SO2 by NO2 occurs efficiently in aqueous media under two polluted conditions: first, during the formation of the 1952 London Fog via in-cloud oxidation; and second, on fine PM with NH3 neutralization during severe haze in China. We suggest that effective haze mitigation is achievable by intervening in the sulfate formation process with NH3 and NO2 emission control measures. Hence, our results explain the outstanding sulfur problem during the historic London Fog formation and elucidate the chemical mechanism of severe haze in China. Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.
Science | 2011
An Zhisheng; Steven C. Clemens; Ji Shen; Xiaoke Qiang; Zhangdong Jin; Youbin Sun; Warren L. Prell; Jing-Jia Luo; Sumin Wang; Hai Xu; Yanjun Cai; Weijian Zhou; Xiaodong Liu; Weiguo Liu; Zhengguo Shi; Libin Yan; Xiayun Xiao; Hong Chang; Feng Wu; Li Ai; Fengyan Lu
Indian summer monsoon changes during the Pleistocene were influenced by dynamic effects originating in both hemispheres. The modern Indian summer monsoon (ISM) is characterized by exceptionally strong interhemispheric transport, indicating the importance of both Northern and Southern Hemisphere processes driving monsoon variability. Here, we present a high-resolution continental record from southwestern China that demonstrates the importance of interhemispheric forcing in driving ISM variability at the glacial-interglacial time scale as well. Interglacial ISM maxima are dominated by an enhanced Indian low associated with global ice volume minima. In contrast, the glacial ISM reaches a minimum, and actually begins to increase, before global ice volume reaches a maximum. We attribute this early strengthening to an increased cross-equatorial pressure gradient derived from Southern Hemisphere high-latitude cooling. This mechanism explains much of the nonorbital scale variance in the Pleistocene ISM record.
Environmental Science & Technology | 2013
Xiaolin Hou; Pavel P. Povinec; L. Zhang; Keliang Shi; Dana Lee Biddulph; Ching Chih Chang; Yukun Fan; Robin Golser; Yingkun Hou; M. Ješkovský; A.J.Tim Jull; Qi Liu; Maoyi Luo; Peter Steier; Weijian Zhou
The Fukushima nuclear accident in March 2011 has released a large amount of radioactive pollutants to the environment. Of the pollutants, iodine-129 is a long-lived radionuclide and will remain in the environment for millions of years. This work first report levels and inorganic speciation of (129)I in seawater depth profiles collected offshore Fukushima in June 2011. Significantly elevated (129)I concentrations in surface water were observed with the highest (129)I/(127)I atomic ratio of 2.2 × 10(-9) in the surface seawater 40 km offshore Fukushima. Iodide was found as the dominant species of (129)I, while stable (127)I was mainly in iodate form, reflecting the fact that the major source of (129)I is the direct liquid discharges from the Fukushima NPP. The amount of (129)I directly discharged from the Fukushima Dai-ichi nuclear power plant to the sea was estimated to be 2.35 GBq, and about 1.09 GBq of (129)I released to the atmosphere from the accident was deposited in the sea offshore Fukushima. A total release of 8.06 GBq (or 1.2 kg) of (129)I from the Fukushima accident was estimated. These Fukushima-derived (129)I data provide necessary information for the investigation of water circulation and geochemical cycle of iodine in the northwestern Pacific Ocean in the future.
Science China-earth Sciences | 1999
Zhisheng An; Sumin Wang; Xihao Wu; Mingyang Chen; Donghuai Sun; Xiuming Liu; Fubao Wang; Li Li; Youbin Sun; Weijian Zhou; Jie Zhou; Xiaodong Liu; Huayu Lu; Yunxiang Zhang; Guangrong Dong; Xiaoke Qiang
On the basis of a newly-constructed record of magnetic susceptibility (SUS) and the depositional rate change of eolian loess-red clay sequences in the last 7.2 Ma BP from the hea Plateau, together with a cornperison of a record of °18O values from the equatorial East Pacific Ocean and eolian Quartz flux variations fmm the North Pacific Ocean, the evolutiomuy process of the Late Cenozoic Great Glaciation in the Northern Hemisphere can be divided into three stages: the arrival stage around 7.2–3.4 Ma BP, the initial stage at about 3.4—2.6 Ma BP, and the Great Ice Age since 2.6 Ma BP. The evolution of the East Asian monsoon is characterized by paid winter and summer monsoons, and it is basically composed of the initial stage of weak winter and summer monsoons, the transitional stage of simultaneous increase in intensity of winter and summer monsoons, and the prevailing stage of strong winter and week summer monsoons, or weak winter and strong summer monsoons. The Late Cenowic global tectonic uplift, paaicdarly the Qinghai-Xizang Plateau uplift and the associated CO2 concentration variation, controls the dng processes of the onset of Great Glaciation and the long-term changes of East Asian monsoom climate in the Northern Hemisphere to a large extent. The accelerating uplift of the Qinghai-Xizang Plateau between 3.4 and 2.6 Ma BP provided an important driving force to global climiatic change.
Palaeogeography, Palaeoclimatology, Palaeoecology | 1999
Weijian Zhou; M.J Head; Xuefeng Lu; Zhisheng An; A. J. T. Jull; D.J. Donahue
Abstract From observations of continuous aeolian and swamp sediment sequences, augmented by a detailed 14 C chronology, δ 13 C and organic C analyses, we can demonstrate century- to millennium-scale fluctuations in East Asian monsoon palaeoclimatic events. We also infer significant precipitation variability within the last deglaciation. The major climatic zones that have been recognised in Europe, and find counterparts in East Asia are, the Bolling–Allerod (14,750–12,800 cal yr B.P.), and the Younger Dryas (12,800–11,600 cal yr B.P.). The last deglaciation sediment sequences are characterised by frequent facies changes reflecting climate instability. These frequent, abrupt climatic events correlate well with fluctuations recorded in high latitude and polar areas, as represented by the Greenland ice core GISP 2 and a core from the North Sea. This indicates a palaeoclimate teleconnection between the high latitude and polar areas and the East Asian monsoon areas through cold air mass activity, and the related atmospheric pressure system.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Yanjun Cai; Inez Y. Fung; R. Lawrence Edwards; Zhisheng An; Hai Cheng; Jung-Eun Lee; Liangcheng Tan; Chuan-Chou Shen; Xianfeng Wang; Jesse A. Day; Weijian Zhou; Megan J. Kelly; John C. H. Chiang
Significance This paper presents a new long speleothem δ18O time series from Xiaobailong cave in southwest China that characterizes changes in a major branch of Indian summer monsoon precipitation over the last 252 kyrs. This record shows not only 23-kyr precessional cycles punctuated by prominent millennial-scale weak monsoon events synchronous with Heinrich events in the North Atlantic, but also clear glacial–interglacial variations that are consistent with marine records but different from the cave records in East China. The speleothem records of Xiaobailong and other caves in East China show that the relationship between the Indian and the East Asian summer monsoon precipitation is not invariant, but rather varies on different timescales depending on the nature and magnitude of the climate forcing. A speleothem δ18O record from Xiaobailong cave in southwest China characterizes changes in summer monsoon precipitation in Northeastern India, the Himalayan foothills, Bangladesh, and northern Indochina over the last 252 kyr. This record is dominated by 23-kyr precessional cycles punctuated by prominent millennial-scale oscillations that are synchronous with Heinrich events in the North Atlantic. It also shows clear glacial–interglacial variations that are consistent with marine and other terrestrial proxies but are different from the cave records in East China. Corroborated by isotope-enabled global circulation modeling, we hypothesize that this disparity reflects differing changes in atmospheric circulation and moisture trajectories associated with climate forcing as well as with associated topographic changes during glacial periods, in particular redistribution of air mass above the growing ice sheets and the exposure of the “land bridge” in the Maritime continents in the western equatorial Pacific.
Earth and Planetary Science Letters | 2001
Weijian Zhou; M.John Head; Zhisheng An; Patrick De Deckker; Zhengyu Liu; Xiaodong Liu; Xuefeng Lu; D.J. Donahue; A. J. Timothy Jull; J. Warren Beck
The Younger Dryas chronozone, recognised in northern high-latitude areas as a cold event between 11 000 and 10 000 14C yr BP (12 900–11 600 cal. yr BP), seems to manifest itself globally in different ways. Here, we examine well-dated stratigraphic sequences together with high-resolution proxy data plots from sites across our study area, the arid–semi-arid transition zone in northern China. This climatically sensitive area of China records a cold, dry Younger Dryas climate which was punctuated by a brief period of summer monsoon precipitation. We have since found that similar climatic sequences have been reported from the Sahel and the equatorial region of Africa. Based on evidence from these sites, together with other published data, we postulate that precipitation during the Younger Dryas chronozone was indicative of a low-latitude driving force superimposed on the high-latitude cold background. This rain belt rearrangement was most probably caused by an interaction between cold air advection and summer moisture transport across the tropical Pacific Ocean. Examination of high-resolution proxies suggests short-term climate fluctuations indicative of a global teleconnection involving moist air transportation patterns from the tropics to higher latitudes, varying with ENSO and other tropical factors.
Quaternary International | 2001
Weijian Zhou; M.John Head; Lin Deng
Abstract Nine representative high resolution profiles with reliable 14C chronologies have been chosen from the monsoon sensitive areas in China (winter monsoon from the north-west, and summer monsoon from the east) to provide a comparative picture of climate change within these areas. Comprehensive analyses of stratigraphic sequences and climatic proxy data have been used to reconstruct a history of fluctuating dry and wet environmental conditions in these monsoon sensitive areas since the last deglaciation. These records have also been compared with Greenland ice core and Guliya ice core data. Four major events representing these climate fluctuations (E1–E4) are recognised. Among them, E3 indicates an abrupt cooling event after the Younger Dryas interval. This event has so far only been recognised in China and high latitude areas in the northern hemisphere. It is proposed that century to millenial scale global temperature changes affect the intensity of monsoon circulation through ocean/atmosphere interactions, hence producing dry and wet climate fluctuations in monsoon sensitive areas. In an era of global warming, the overall picture presented by the sequences of wet/dry periods recorded in Chinese monsoon affected areas during the last deglaciation can be used as an historical analogue for future predictions of medium to long term climate change within these areas.
Radiocarbon | 1997
Weijian Zhou; D.J. Donahue; A. J. T. Jull
Dating pollen concentrated from eolian sediments provides a new way to establish a chronological framework on the Loess Plateau of China. We show that pollen deposited simultaneously with sediment in a stable environment can provide reliable ages. We suggest that the reliability of pollen dating can be evaluated by comparison with wood cellulose or charcoal ages from the same stratigraphic level. Dating pollen concentrates from the various profiles indicates paleomonsoon precipitation variability at the loess/desert transitional belt from the late Pleistocene to the early Holocene.