Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weisan Pan is active.

Publication


Featured researches published by Weisan Pan.


International Journal of Pharmaceutics | 2009

Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery

Ning Li; Chunyang Zhuang; Mi Wang; Xiyang Sun; Shufang Nie; Weisan Pan

In this study liposome coated with low molecular weight chitosan (LCH) was proposed and investigated its in vitro and in vivo properties, and its potential use in ocular drug delivery was evaluated. LCH with a molecular weight of 8kDa was prepared and coated on liposome loaded with diclofenac sodium. The LCH coating changed the liposome surface charge and slightly increased its particle size, while the drug encapsulation was not affected. After coating, the liposome displayed a prolonged in vitro drug release profile. LCH coated liposome also demonstrated an improved physicochemical stability at 25 degrees C in a 30-day storage period. The ocular bioadhesion property was evaluated by rabbit in vivo precorneal retention, and LCH coated liposome achieved a significantly prolonged retention compared with non-coated liposome or drug solution. The LCH coating also displayed a potential penetration enhancing effect for transcorneal delivery of the drug. In the ocular tolerance study, no irritation or toxicity was caused by continual administration of LCH coated liposome in a total period of 7 days. In conclusion, the LCH coating significantly modified the properties of liposome and brought a series of notable advantages for ocular drug delivery.


Drug Development and Industrial Pharmacy | 2005

Preparation and Evaluation of SEDDS and SMEDDS Containing Carvedilol

Lan-Lan Wei; Peinan Sun; Shufang Nie; Weisan Pan

ABSTRACT A new self-emulsifying drug delivery system (SEDDS) and self-microemulsifying drug delivery system (SMEDDS) have been developed to increase the solubility, dissolution rate, and, ultimately, oral bioavailability of a poorly water soluble drug, carvedilol. Ternary phase diagrams were used to evaluate the self-emulsification and self-microemulsfication domains. The self-emulsification time following introduction into an aqueous medium under gentle agitation was evaluated. The minimum self-emulsification time was found at a Tween 80 content of 40%. The particle size distribution and ζ-potential were determined. Benzoic acid had a dual function, it improved the self-emulsification performance of SEDDS and SMEDDS in 0.1 N HCl and lead to a positively charged emulsion. The in vitro dissolution rate of carvedilol from SEDDS and SMEDDS was more than two-fold faster compared with that from tablets. The developed SEDDS formulations significantly improved the oral bioavailability of carvedilol significantly, and the relative oral bioavailability of SEDDS compared with commercially available tablets was 413%.


International Journal of Pharmaceutics | 2008

A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers.

Xiang Li; Shufang Nie; Jun Kong; Ning Li; Chengyi Ju; Weisan Pan

The objective of this study was to develop an ocular drug delivery system based on nanostructured lipid carrier and investigate its in vitro and in vivo characteristics. Ibuprofen was chosen as the model drug. Four different formulations of ibuprofen nanostructured lipid carriers were prepared by melted-ultrasonic methods; gelucire 44/14 was screened as one of the solid lipid matrix materials due to the good particle size dispersion and excellent contribution to the corneal permeability of the model drug. The modified Franz-type diffusion cells and isolated corneas were used in the test of drug corneal permeability and the in vivo releasing tests were carried out using microdialysis method. gelucire 44/14 and transcutol P could enhance the corneal permeability by different mechanisms. The corresponding apparent permeability coefficients (P(app)) were 1.28 and 1.36 times more than that of the control preparation. Stearylamine could prolong the pre-cornea retention time of the model drug to some extent. Ibuprofen nanostructured lipid carriers displayed controlled-release property. The AUC of the optimized formulation of ibuprofen nanostuctured lipid carriers was 3.99 times more than that of ibuprofen eye drops).


International Journal of Pharmaceutics | 2010

Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability.

Chunyang Zhuang; Ning Li; Mi Wang; Xiao-Ning Zhang; Weisan Pan; Junjie Peng; Yusheng Pan; Xin Tang

The purpose of this study is to develop an optimized nanostructured lipid carriers (NLC) formulation for vinpocetine (VIN), and to estimate the potential of NLC as oral delivery system for poorly water-soluble drug. In this work, VIN-loaded NLC (VIN-NLC) was prepared by a high pressure homogenization method. The VIN-NLC showed spherical morphology with smooth surface under transmission electron microscope (TEM) and scanning electron microscopic (SEM) analysis. The average encapsulation efficiency was 94.9+/-0.4%. The crystallization of drug in NLC was investigated by powder X-ray diffraction and differential scanning calorimetry (DSC). The drug was in an amorphous state in the NLC matrix. In the in vitro release study, VIN-NLC showed a sustained release profile of VIN and no obviously burst release was observed. The oral bioavailability study of VIN was carried out using Wistar rats. The relative bioavailability of VIN-NLC was 322% compared with VIN suspension. In conclusion, the NLC formulation remarkably improved the oral bioavailability of VIN and demonstrated a promising perspective for oral delivery of poorly water-soluble drugs.


International Journal of Pharmaceutics | 2011

Nanostructured lipid carrier (NLC) coated with Chitosan Oligosaccharides and its potential use in ocular drug delivery system.

Qiuhua Luo; Junming Zhao; Xiangrong Zhang; Weisan Pan

The objective of the present investigation was to explore the potential of the Chitosan Oligosaccharides (COS)-coated NLC (nanostructured lipid carrier) for ocular drug delivery. NLC loaded with flurbiprofen was prepared by melt-ultrasonic method and then coated with COS with a molecular weight of 3000-6000kDa. After coating, the particles reflected spherical morphology with smooth surface under transmission electron microscope (TEM) analysis and a changed zeta potential from -0.446mV to +20.7mV. The ocular bioadhesion property was evaluated by Gamma scintigraphic technique, revealing that the clearance of the formulations labeled with radioactive 99(m)Tc-DTPA was significantly delayed in the presence of COS, and the AUC of the COS-coated formulation had a 7.7-fold increase comparing with non-coated ones. Additionally, enhanced transcorneal penetration was achieved by using the COS coating with a corresponding apparent permeability coefficients (P(app)) which had a 2.4-fold increase comparing with the reference. Consequently, COS coating modified the properties of NLCs and presented a series of notable advantages in ophthalmic application.


Drug Development and Industrial Pharmacy | 2009

Preparation and Evaluation of Self-Microemulsifying Drug Delivery System Containing Vinpocetine

Shuxia Cui; Shufang Nie; Li Li; Changguang Wang; Weisan Pan; Jian-ping Sun

The main purpose of current investigation is to prepare a self-microemulsifying drug delivery system (SMEDDS) to enhance the oral bioavailability of vinpocetine, a poorly water-soluble drug. Suitable vehicles were screened by determining the solubility of vinpocetine in them. Certain surfactants were selected according to their emulsifying ability with different oils. Ternary phase diagrams were used to identify the efficient self-microemulsifying region and to screen the effect of surfactant/cosurfactant ratio (Km). The optimized formulation for in vitro dissolution and bioavailability assessment was oil (ethyl oleate, 15%), surfactant (Solutol HS 15, 50%), and cosurfactant (Transcutol® P, 35%). The release rate of vinpocetine from SMEDDS was significantly higher than that of the commercial tablet. Pharmacokinetics and bioavailability of SMEDDS were evaluated. It was found that the oral bioavailability of vinpocetine of SMEDDS was 1.72-fold higher as compared with that of the commercial tablet. These results obtained demonstrated that vinpocetine absorption was enhanced significantly by employing SMEDDS. Therefore, SMEDDS might provide an efficient way of improving oral bioavailability of poorly water-soluble drugs.


Journal of Controlled Release | 2009

Optimized preparation of vinpocetine proliposomes by a novel method and in vivo evaluation of its pharmacokinetics in New Zealand rabbits.

Hongtao Xu; Ling He; Shufang Nie; Jin Guan; Xiaoning Zhang; Xinggang Yang; Weisan Pan

Free-flowing proliposomes which contained vinpocetine were prepared successfully to increase the oral bioavailability of vinpocetine. In this study the proliposomes were prepared by a novel method which was reported for the first time and the formulation was optimized using the centre composite design (CCD). The optimized formulation was Soybean phosphatidylcholine: 860 mg; cholesterol: 95 mg and sorbitol: 8000 mg. After the proliposomes were contacted with water, the suspension of vinpocetine liposomes formed automatically and the entrapment efficiency was approximately 86.3% with an average particle size of about 300 nm. The physicochemical properties of the proliposomes including SEM, TEM, XRD and FTIR were also detected. HPLC system was applied to study the concentration of vinpocetine in the plasma of the New Zealand rabbits after oral administration of vinpocetine proliposomes and vinpocetine suspension. The pharmacokinetic parameters were calculated by the software program DAS2.0. The concentration-time curves of vinpocetine suspension and vinpocetine proliposomes were much more different. There were two absorption peaks on the concentration-time curves of the vinpocetine proliposomes. The pharmacokinetic parameters of vinpocetine and vinpocetine proliposomes in New Zealand rabbits were T(max) 1 h and 3 h (there was also an absorption peak at 1 h); C(max) 163.82+/-12.28 ng/ml and 166.43+/-21.04 ng/ml; AUC(0-infinity) 1479.70+/-68.51 ng/ml h and 420.70+/-35.86 ng/ml h, respectively. The bioavailability of vinpocetine in proliposomes was more than 3.5 times higher than the vinpocetine suspension. The optimized vinpocetine proliposomes did improve the oral bioavailability of vinpocetine in New Zealand rabbits and offer a new approach to enhance the gastrointestinal absorption of poorly water soluble drugs.


Journal of Pharmacy and Pharmacology | 2003

Potential utility of various protease inhibitors for improving the intestinal absorption of insulin in rats

Hui Liu; Ren Tang; Weisan Pan; Yi Zhang; Hong Liu

The aim of the investigation was to study the effects of protease inhibitors on the absorption of insulin in‐situ from closed small and large intestinal loops in rats and to investigate the mechanism of various protease inhibitors in different intestinal loops. The intestinal absorption of insulin was evaluated by its hypoglycaemic effect and serum insulin level in the presence or absence of luminal contents. No marked hypoglycaemic effect was observed after administration of insulin alone in either region in the presence or absence of luminal contents. A significant hypoglycaemic effect of insulin was obtained in the large intestinal loop in the presence or absence of luminal contents when insulin was co‐administered with bacitracin (20, 30 mM), sodium glycocholate (20, 40 mM), bestatin (29 mM), leupeptin (21 mM) and cystatin (0.8 mM). In contrast, there was no hypoglycaemic effect in the small intestinal loop in the presence of luminal contents following small intestinal co‐administration of insulin with these protease inhibitors. The effectiveness of protease inhibitors was susceptible to their categories, concentrations and activity of proteolytic enzymes in different regions. The degree of improving insulin absorption in intestine was in the order of leupeptin > sodium glycocholate > bacitracin > bestatin > cystatin. At the same time, the percutaneous enhancement effect was observed in the presence of either sodium glycocholate or bacitracin. These results suggest that protease inhibitors could increase the insulin efficacy more effectively in the large intestine than in the small intestine.


International Journal of Nanomedicine | 2011

In vitro and in vivo evaluation of folate receptor-targeting amphiphilic copolymer-modified liposomes loaded with docetaxel

Xiang Li; Xin Tian; Jing Zhang; Xu Zhao; Xiaohui Chen; Youhong Jiang; Dongkai Wang; Weisan Pan

Background: The purpose of this study was to develop folate-poly (PEG-cyanoacrylate-co-cholesteryl cyanoacrylate) (FA-PEG-PCHL)-modified freeze-dried liposomes for targeted chemotherapy using docetaxel as a model drug. Methods: FA-PEG-PCHL was synthesized and its cytotoxicity was evaluated by CCK-8 assay in L929. Docetaxel-loaded liposomes modified by FA-PEG-PCHL were prepared by an organic solvent injection method and lyophilized to obtain freeze-dried FA-PEG-PCHL-docetaxel liposomes (FA-PDCT-L). Two carcinoma cell lines (MCF-7 and A-549 cells) were cultured with docetaxel solution, conventional docetaxel-loaded liposomes, or FA-PDCT-L, and the cytotoxicity and apoptosis was evaluated for each preparation. The uptake of the docetaxel preparations into MCF-7 cells was studied by confocal laser scanning microscopy. Liquid chromatography-mass spectrometry was used to study the pharmacokinetics and tissue distribution characteristics of the preparations. Results: The existence of an enlarged fixed aqueous layer on the surface of the liposomes was affirmed by zeta potential analysis. The entrapment efficiency and particle size distribution were almost the same as those of docetaxel-loaded liposomes. The drug release profile showed that the release rate was faster at higher molecular weight of the polymer. Compared with docetaxel solution and docetaxel-loaded liposomes, FA-PDCT-L demonstrated the strongest cytotoxicity against two carcinoma cell lines, the greatest intracellular uptake especially in the nucleus, as well as the most powerful apoptotic efficacy. In pharmacokinetic studies, the area under the plasma concentration-time curve of FA-PDCT-L was increased 3.82 and 6.23 times in comparison with the values for the docetaxel-loaded liposomes and docetaxel solution, respectively. Meanwhile, a lower concentration of docetaxel was observed for FA-PDCT-L in the liver and spleen, and a significantly higher concentration of FA-PDCT-L in tumors suggested that the presence of FA-PEG-PCHL on the liposomes resulted in greater accumulation of the drug in tumor tissue. Conclusion: Liposomes modified by FA-PEG-PCHL could be one of the promising suspensions for the delivery of antitumor drugs in cancer.


Carbohydrate Polymers | 2017

A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery

Shihui Yu; Xiaoyu Zhang; Guoxin Tan; Lei Tian; Dandan Liu; Yaxuan Liu; Xinggang Yang; Weisan Pan

In this work, a stimuli-responsive three dimensional cross-linked hydrogel system containing carboxymethyl chitosan (CMC) and poloxamer composed of a poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide) (PEO-PPO-PEO) block copolymer was constructed, and its aqueous solution was found to undergo a reversible sol-gel transition upon a temperature and/or pH change at a very low concentration. The hydrogels were synthesized via a cross-linking reaction using glutaraldehyde (GA) as the cross-linking agent. The structures of the hydrogels were characterized by FTIR, XRD, NMR and SEM studies and the swelling behaviour was studied in different buffered solutions. The results obtained indicated that cross-linked F127-CMC underwent discontinuous phase transition in different temperature and pH solutions. The hydrogels at 35°C and pH 7.4 were found to have larger pores than at the other three conditions which resulted in greater swelling. The result of rheological studies showed that the gelation temperature was 32-33°C and the viscosity of the hydrogel increased quickly after gelation. In an addition, the cytotoxicity and in vitro release was studied at different pH values and temperature. The results of a CCK-8 (Cell Counting Kit-8) assay showed that the hydrogel and its physical mixture solution were not cytotoxic to human corneal epithelial cells at a low concentration. Using the drug nepafenac (NP) as a model drug, the controlled drug release behaviour of these hydrogels was investigated. Owing to the formation of F127-CMC/NP retarding the diffusion rate of NP, a sustained release of NP from the hydrogel can be obtained. The release rate was found to be maximum at 35°C and pH 7.4. From these preliminary evaluations, it is possible to conclude that the hydrogels have an excellent potential for application in ophthalmic drug delivery systems.

Collaboration


Dive into the Weisan Pan's collaboration.

Top Co-Authors

Avatar

Xinggang Yang

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Shufang Nie

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Dandan Liu

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Fen Chen

Liaoning University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenji Zhang

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Shihui Yu

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Hui Liu

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Tiantian Ye

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Zhihong Zhu

Shenyang Pharmaceutical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge