Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhihong Zhu is active.

Publication


Featured researches published by Zhihong Zhu.


Nature Genetics | 2016

Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets

Zhihong Zhu; Futao Zhang; Han Hu; Andrew Bakshi; Matthew R. Robinson; Joseph E. Powell; Grant W. Montgomery; Michael E. Goddard; Naomi R. Wray; Peter M. Visscher; Jian Yang

Genome-wide association studies (GWAS) have identified thousands of genetic variants associated with human complex traits. However, the genes or functional DNA elements through which these variants exert their effects on the traits are often unknown. We propose a method (called SMR) that integrates summary-level data from GWAS with data from expression quantitative trait locus (eQTL) studies to identify genes whose expression levels are associated with a complex trait because of pleiotropy. We apply the method to five human complex traits using GWAS data on up to 339,224 individuals and eQTL data on 5,311 individuals, and we prioritize 126 genes (for example, TRAF1 and ANKRD55 for rheumatoid arthritis and SNX19 and NMRAL1 for schizophrenia), of which 25 genes are new candidates; 77 genes are not the nearest annotated gene to the top associated GWAS SNP. These genes provide important leads to design future functional studies to understand the mechanism whereby DNA variation leads to complex trait variation.


Nature Genetics | 2015

Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index

Jian Yang; Andrew Bakshi; Zhihong Zhu; Gibran Hemani; Anna A. E. Vinkhuyzen; Sang Hong Lee; Matthew R. Robinson; John Perry; Ilja M. Nolte; Jana V. van Vliet-Ostaptchouk; Harold Snieder; Tonu Esko; Lili Milani; Reedik Mägi; Andres Metspalu; Anders Hamsten; Patrik K. E. Magnusson; Nancy L. Pedersen; Erik Ingelsson; Nicole Soranzo; Matthew C. Keller; Naomi R. Wray; Michael E. Goddard; Peter M. Visscher

We propose a method (GREML-LDMS) to estimate heritability for human complex traits in unrelated individuals using whole-genome sequencing data. We demonstrate using simulations based on whole-genome sequencing data that ∼97% and ∼68% of variation at common and rare variants, respectively, can be captured by imputation. Using the GREML-LDMS method, we estimate from 44,126 unrelated individuals that all ∼17 million imputed variants explain 56% (standard error (s.e.) = 2.3%) of variance for height and 27% (s.e. = 2.5%) of variance for body mass index (BMI), and we find evidence that height- and BMI-associated variants have been under natural selection. Considering the imperfect tagging of imputation and potential overestimation of heritability from previous family-based studies, heritability is likely to be 60–70% for height and 30–40% for BMI. Therefore, the missing heritability is small for both traits. For further discovery of genes associated with complex traits, a study design with SNP arrays followed by imputation is more cost-effective than whole-genome sequencing at current prices.


PLOS Genetics | 2011

Genome-wide interaction-based association analysis identified multiple new susceptibility loci for common diseases

Yang Liu; Haiming Xu; Suchao Chen; Xianfeng Chen; Zhenguo Zhang; Zhihong Zhu; Xueying Qin; Landian Hu; Jun Zhu; Guoping Zhao; Xiangyin Kong

Genome-wide interaction-based association (GWIBA) analysis has the potential to identify novel susceptibility loci. These interaction effects could be missed with the prevailing approaches in genome-wide association studies (GWAS). However, no convincing loci have been discovered exclusively from GWIBA methods, and the intensive computation involved is a major barrier for application. Here, we developed a fast, multi-thread/parallel program named “pair-wise interaction-based association mapping” (PIAM) for exhaustive two-locus searches. With this program, we performed a complete GWIBA analysis on seven diseases with stringent control for false positives, and we validated the results for three of these diseases. We identified one pair-wise interaction between a previously identified locus, C1orf106, and one new locus, TEC, that was specific for Crohns disease, with a Bonferroni corrected P<0.05 (P = 0.039). This interaction was replicated with a pair of proxy linked loci (P = 0.013) on an independent dataset. Five other interactions had corrected P<0.5. We identified the allelic effect of a locus close to SLC7A13 for coronary artery disease. This was replicated with a linked locus on an independent dataset (P = 1.09×10−7). Through a local validation analysis that evaluated association signals, rather than locus-based associations, we found that several other regions showed association/interaction signals with nominal P<0.05. In conclusion, this study demonstrated that the GWIBA approach was successful for identifying novel loci, and the results provide new insights into the genetic architecture of common diseases. In addition, our PIAM program was capable of handling very large GWAS datasets that are likely to be produced in the future.


American Journal of Human Genetics | 2015

Improving Phenotypic Prediction by Combining Genetic and Epigenetic Associations

Sonia Shah; Marc Jan Bonder; Riccardo E. Marioni; Zhihong Zhu; Allan F. McRae; Alexandra Zhernakova; Sarah E. Harris; Dave Liewald; Anjali K. Henders; Michael M. Mendelson; Chunyu Liu; Roby Joehanes; Liming Liang; Daniel Levy; Nicholas G. Martin; Cisca Wijmenga; Naomi R. Wray; Jian Yang; Grant W. Montgomery; Lude Franke; Ian J. Deary; Peter M. Visscher

We tested whether DNA-methylation profiles account for inter-individual variation in body mass index (BMI) and height and whether they predict these phenotypes over and above genetic factors. Genetic predictors were derived from published summary results from the largest genome-wide association studies on BMI (n ∼ 350,000) and height (n ∼ 250,000) to date. We derived methylation predictors by estimating probe-trait effects in discovery samples and tested them in external samples. Methylation profiles associated with BMI in older individuals from the Lothian Birth Cohorts (LBCs, n = 1,366) explained 4.9% of the variation in BMI in Dutch adults from the LifeLines DEEP study (n = 750) but did not account for any BMI variation in adolescents from the Brisbane Systems Genetic Study (BSGS, n = 403). Methylation profiles based on the Dutch sample explained 4.9% and 3.6% of the variation in BMI in the LBCs and BSGS, respectively. Methylation profiles predicted BMI independently of genetic profiles in an additive manner: 7%, 8%, and 14% of variance of BMI in the LBCs were explained by the methylation predictor, the genetic predictor, and a model containing both, respectively. The corresponding percentages for LifeLines DEEP were 5%, 9%, and 13%, respectively, suggesting that the methylation profiles represent environmental effects. The differential effects of the BMI methylation profiles by age support previous observations of age modulation of genetic contributions. In contrast, methylation profiles accounted for almost no variation in height, consistent with a mainly genetic contribution to inter-individual variation. The BMI results suggest that combining genetic and epigenetic information might have greater utility for complex-trait prediction.


PLOS ONE | 2013

Development of GMDR-GPU for Gene-Gene Interaction Analysis and Its Application to WTCCC GWAS Data for Type 2 Diabetes

Zhi-Xiang Zhu; Xiaoran Tong; Zhihong Zhu; Meimei Liang; Wenyan Cui; Kunkai Su; Ming D. Li; Jun Zhu

Although genome-wide association studies (GWAS) have identified a significant number of single-nucleotide polymorphisms (SNPs) associated with many complex human traits, the susceptibility loci identified so far can explain only a small fraction of the genetic risk. Among other possible explanations, the lack of a comprehensive examination of gene–gene interaction (G×G) is often considered a source of the missing heritability. Previously, we reported a model-free Generalized Multifactor Dimensionality Reduction (GMDR) approach for detecting G×G in both dichotomous and quantitative phenotypes. However, the computational burden and less efficient implementation of the original programs make them impossible to use for GWAS. In this study, we developed a graphics processing unit (GPU)-based GMDR program (named GWAS-GPU), which is able not only to analyze GWAS data but also to run much faster than the earlier version of the GMDR program. As a demonstration of the program, we used the GMDR-GPU software to analyze a publicly available GWAS dataset on type 2 diabetes (T2D) from the Wellcome Trust Case Control Consortium. Through an exhaustive search of pair-wise interactions and a selected search of three- to five-way interactions conditioned on significant pair-wise results, we identified 24 core SNPs in six genes (FTO: rs9939973, rs9940128, rs9922047, rs1121980, rs9939609, rs9930506; TSPAN8: rs1495377; TCF7L2: rs4074720, rs7901695, rs4506565, rs4132670, rs10787472, rs11196205, rs10885409, rs11196208; L3MBTL3: rs10485400, rs4897366; CELF4: rs2852373, rs608489; RUNX1: rs445984, rs1040328, rs990074, rs2223046, rs2834970) that appear to be important for T2D. Of these core SNPs, 11 in FTO, TSPAN8, and TCF7L2 have been reported to be associated with T2D, obesity, or both, providing an independent replication of previously reported SNPs. Importantly, we identified three new susceptibility genes; i.e., L3MBTL3, CELF4, and RUNX1, for T2D, a finding that warrants further investigation with independent samples.


Nature Communications | 2018

Causal associations between risk factors and common diseases inferred from GWAS summary data

Zhihong Zhu; Zhili Zheng; Futao Zhang; Yang Wu; Maciej Trzaskowski; Robert Maier; Matthew R. Robinson; John J. McGrath; Peter M. Visscher; Naomi R. Wray; Jian Yang

Health risk factors such as body mass index (BMI) and serum cholesterol are associated with many common diseases. It often remains unclear whether the risk factors are cause or consequence of disease, or whether the associations are the result of confounding. We develop and apply a method (called GSMR) that performs a multi-SNP Mendelian randomization analysis using summary-level data from genome-wide association studies to test the causal associations of BMI, waist-to-hip ratio, serum cholesterols, blood pressures, height, and years of schooling (EduYears) with common diseases (sample sizes of up to 405,072). We identify a number of causal associations including a protective effect of LDL-cholesterol against type-2 diabetes (T2D) that might explain the side effects of statins on T2D, a protective effect of EduYears against Alzheimer’s disease, and bidirectional associations with opposite effects (e.g., higher BMI increases the risk of T2D but the effect of T2D on BMI is negative).Genetic methods are useful to test whether risk factors are causal for or consequence of disease. Here, Zhu et al. develop a generalized summary-based Mendelian Randomization (GSMR) method which uses summary-level data from GWAS to test for causal associations of health risk factors with common diseases.


Human Molecular Genetics | 2015

Genome-wide genetic homogeneity between sexes and populations for human height and body mass index

Jian Yang; Andrew Bakshi; Zhihong Zhu; Gibran Hemani; Anna A. E. Vinkhuyzen; Ilja M. Nolte; Jana V. van Vliet-Ostaptchouk; Harold Snieder; Tonu Esko; Lili Milani; Reedik Maegi; Andres Metspalu; Anders Hamsten; Patrik K. E. Magnusson; Nancy L. Pedersen; Erik Ingelsson; Peter M. Visscher

Sex-specific genetic effects have been proposed to be an important source of variation for human complex traits. Here we use two distinct genome-wide methods to estimate the autosomal genetic correlation (rg) between men and women for human height and body mass index (BMI), using individual-level (n = ∼44 000) and summary-level (n = ∼133 000) data from genome-wide association studies. Results are consistent and show that the between-sex genetic correlation is not significantly different from unity for both traits. In contrast, we find evidence of genetic heterogeneity between sexes for waist-hip ratio (rg = ∼0.7) and between populations for BMI (rg = ∼0.9 between Europe and the USA) but not for height. The lack of evidence for substantial genetic heterogeneity for body size is consistent with empirical findings across traits and species.


Scientific Reports | 2016

Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits

Andrew Bakshi; Zhihong Zhu; Anna A. E. Vinkhuyzen; W. David Hill; Allan F. McRae; Peter M. Visscher; Jian Yang

We propose a method (fastBAT) that performs a fast set-based association analysis for human complex traits using summary-level data from genome-wide association studies (GWAS) and linkage disequilibrium (LD) data from a reference sample with individual-level genotypes. We demonstrate using simulations and analyses of real datasets that fastBAT is more accurate and orders of magnitude faster than the prevailing methods. Using fastBAT, we analyze summary data from the latest meta-analyses of GWAS on 150,064–339,224 individuals for height, body mass index (BMI), and schizophrenia. We identify 6 novel gene loci for height, 2 for BMI, and 3 for schizophrenia at PfastBAT < 5 × 10−8. The gain of power is due to multiple small independent association signals at these loci (e.g. the THRB and FOXP1 loci for schizophrenia). The method is general and can be applied to GWAS data for all complex traits and diseases in humans and to such data in other species.


Scientific Reports | 2015

Mixed Linear Model Approaches of Association Mapping for Complex Traits Based on Omics Variants.

Futao Zhang; Zhihong Zhu; Xiaoran Tong; Zhi-Xiang Zhu; Ting Qi; Jun Zhu

Precise prediction for genetic architecture of complex traits is impeded by the limited understanding on genetic effects of complex traits, especially on gene-by-gene (GxG) and gene-by-environment (GxE) interaction. In the past decades, an explosion of high throughput technologies enables omics studies at multiple levels (such as genomics, transcriptomics, proteomics, and metabolomics). The analyses of large omics data, especially two-loci interaction analysis, are very time intensive. Integrating the diverse omics data and environmental effects in the analyses also remain challenges. We proposed mixed linear model approaches using GPU (Graphic Processing Unit) computation to simultaneously dissect various genetic effects. Analyses can be performed for estimating genetic main effects, GxG epistasis effects, and GxE environment interaction effects on large-scale omics data for complex traits, and for estimating heritability of specific genetic effects. Both mouse data analyses and Monte Carlo simulations demonstrated that genetic effects and environment interaction effects could be unbiasedly estimated with high statistical power by using the proposed approaches.


Nature Genetics | 2017

Genotype–covariate interaction effects and the heritability of adult body mass index

Matthew R. Robinson; Geoffrey English; G. Moser; Luke R. Lloyd-Jones; Marcus Triplett; Zhihong Zhu; Ilja M. Nolte; Jana V. van Vliet-Ostaptchouk; Harold Snieder; Tonu Esko; Lili Milani; Reedik Mägi; Andres Metspalu; Patrik K. E. Magnusson; Nancy L. Pedersen; Erik Ingelsson; Magnus Johannesson; Jian Yang; David Cesarini; Peter M. Visscher

Obesity is a worldwide epidemic, with major health and economic costs. Here we estimate heritability for body mass index (BMI) in 172,000 sibling pairs and 150,832 unrelated individuals and explore the contribution of genotype–covariate interaction effects at common SNP loci. We find evidence for genotype–age interaction (likelihood ratio test (LRT) = 73.58, degrees of freedom (df) = 1, P = 4.83 × 10−18), which contributed 8.1% (1.4% s.e.) to BMI variation. Across eight self-reported lifestyle factors, including diet and exercise, we find genotype–environment interaction only for smoking behavior (LRT = 19.70, P = 5.03 × 10−5 and LRT = 30.80, P = 1.42 × 10−8), which contributed 4.0% (0.8% s.e.) to BMI variation. Bayesian association analysis suggests that BMI is highly polygenic, with 75% of the SNP heritability attributable to loci that each explain <0.01% of the phenotypic variance. Our findings imply that substantially larger sample sizes across ages and lifestyles are required to understand the full genetic architecture of BMI.

Collaboration


Dive into the Zhihong Zhu's collaboration.

Top Co-Authors

Avatar

Jian Yang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naomi R. Wray

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Allan F. McRae

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Futao Zhang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Bakshi

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Yang Wu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge