Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weishan Yang is active.

Publication


Featured researches published by Weishan Yang.


Nature Communications | 2013

The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods

Zhijian Cao; Yao Yu; Yingliang Wu; Pei-Pei Hao; Zhiyong Di; Yawen He; Zongyun Chen; Weishan Yang; Zhiyong Shen; Xiaohua He; Jia Sheng; Xiaobo Xu; Bohu Pan; Jing Feng; Xiaojuan Yang; Wei Hong; Wenjuan Zhao; Zhongjie Li; Kai Huang; Tian-tian Li; Yimeng Kong; Hui Liu; Dahe Jiang; Binyan Zhang; Jun Hu; Youtian Hu; Bin-Bin Wang; Jianliang Dai; Bi-Feng Yuan; Yu-Qi Feng

Representing a basal branch of arachnids, scorpions are known as ‘living fossils’ that maintain an ancient anatomy and are adapted to have survived extreme climate changes. Here we report the genome sequence of Mesobuthus martensii, containing 32,016 protein-coding genes, the most among sequenced arthropods. Although M. martensii appears to evolve conservatively, it has a greater gene family turnover than the insects that have undergone diverse morphological and physiological changes, suggesting the decoupling of the molecular and morphological evolution in scorpions. Underlying the long-term adaptation of scorpions is the expansion of the gene families enriched in basic metabolic pathways, signalling pathways, neurotoxins and cytochrome P450, and the different dynamics of expansion between the shared and the scorpion lineage-specific gene families. Genomic and transcriptomic analyses further illustrate the important genetic features associated with prey, nocturnal behaviour, feeding and detoxification. The M. martensii genome reveals a unique adaptation model of arthropods, offering new insights into the genetic bases of the living fossils.


Journal of Biological Chemistry | 2012

Hg1, Novel Peptide Inhibitor Specific for Kv1.3 Channels from First Scorpion Kunitz-type Potassium Channel Toxin Family

Zongyun Chen; Youtian Hu; Weishan Yang; Yawen He; Jing Feng; Bin Wang; Ruiming Zhao; Jiuping Ding; Zhijian Cao; Wenxin Li; Yingliang Wu

Background: The potassium channel inhibitory activity of scorpion Kunitz-type toxins has not yet been determined. Results: We identified the first scorpion Kunitz-type potassium channel toxin family with three groups and seven members. Conclusion: A novel peptide, Hg1, specific for Kv1.3 channel, was found. Significance: Kunitz-type toxins are a new source to screen and design potential peptides for diagnosing and treating Kv1.3-mediated autoimmune diseases. The potassium channel Kv1.3 is an attractive pharmacological target for autoimmune diseases. Specific peptide inhibitors are key prospects for diagnosing and treating these diseases. Here, we identified the first scorpion Kunitz-type potassium channel toxin family with three groups and seven members. In addition to their function as trypsin inhibitors with dissociation constants of 140 nm for recombinant LmKTT-1a, 160 nm for LmKTT-1b, 124 nm for LmKTT-1c, 136 nm for BmKTT-1, 420 nm for BmKTT-2, 760 nm for BmKTT-3, and 107 nm for Hg1, all seven recombinant scorpion Kunitz-type toxins could block the Kv1.3 channel. Electrophysiological experiments showed that six of seven scorpion toxins inhibited ∼50–80% of Kv1.3 channel currents at a concentration of 1 μm. The exception was rBmKTT-3, which had weak activity. The IC50 values of rBmKTT-1, rBmKTT-2, and rHg1 for Kv1.3 channels were ∼129.7, 371.3, and 6.2 nm, respectively. Further pharmacological experiments indicated that rHg1 was a highly selective Kv1.3 channel inhibitor with weak affinity for other potassium channels. Different from classical Kunitz-type potassium channel toxins with N-terminal regions as the channel-interacting interfaces, the channel-interacting interface of Hg1 was in the C-terminal region. In conclusion, these findings describe the first scorpion Kunitz-type potassium channel toxin family, of which a novel inhibitor, Hg1, is specific for Kv1.3 channels. Their structural and functional diversity strongly suggest that Kunitz-type toxins are a new source to screen and design potential peptides for diagnosing and treating Kv1.3-mediated autoimmune diseases.


PLOS ONE | 2013

Genomic and Structural Characterization of Kunitz-Type Peptide LmKTT-1a Highlights Diversity and Evolution of Scorpion Potassium Channel Toxins

Zongyun Chen; Fan Luo; Jing Feng; Weishan Yang; Danyun Zeng; Ruiming Zhao; Zhijian Cao; Maili Liu; Wenxin Li; Ling Jiang; Yingliang Wu

Background Recently, a new subfamily of long-chain toxins with a Kunitz-type fold was found in scorpion venom glands. Functionally, these toxins inhibit protease activity and block potassium channels. However, the genomic organization and three-dimensional (3-D) structure of this kind of scorpion toxin has not been reported. Principal Findings Here, we characterized the genomic organization and 3-D nuclear magnetic resonance structure of the scorpion Kunitz-type toxin, LmKTT-1a, which has a unique cysteine pattern. The LmKTT-1a gene contained three exons, which were interrupted by two introns located in the mature peptide region. Despite little similarity to other Kunitz-type toxins and a unique pattern of disulfide bridges, LmKTT-1a possessed a conserved Kunitz-type structural fold with one α-helix and two β-sheets. Comparison of the genomic organization, 3-D structure, and functional data of known toxins from the α-KTx, β-KTx, γ-KTx, and κ-KTx subfamily suggested that scorpion Kunitz-type potassium channel toxins might have evolved from a new ancestor that is completely different from the common ancestor of scorpion toxins with a CSα/β fold. Thus, these analyses provide evidence of a new scorpion potassium channel toxin subfamily, which we have named δ-KTx. Conclusions/Significance Our results highlight the genomic, structural, and evolutionary diversity of scorpion potassium channel toxins. These findings may accelerate the design and development of diagnostic and therapeutic peptide agents for human potassium channelopathies.


PLOS ONE | 2013

SjAPI, the First Functionally Characterized Ascaris-Type Protease Inhibitor from Animal Venoms

Zongyun Chen; Bin Wang; Jun Hu; Weishan Yang; Zhijian Cao; Renxi Zhuo; Wenxin Li; Yingliang Wu

Background Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. Principal Findings Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI), Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2), Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI), and Buthus martensii Ascaris-type protease inhibitor (BmAPI). The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues “AAV” and might be a useful template to produce new serine protease inhibitors. Conclusions/Significance To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the development of diagnostic and therapeutic agents for human diseases that target diverse proteases.


Cellular and Molecular Life Sciences | 2015

Endogenous animal toxin-like human β-defensin 2 inhibits own K+ channels through interaction with channel extracellular pore region

Weishan Yang; Jing Feng; Fang Xiang; Zili Xie; Guoyi Zhang; Jean-Marc Sabatier; Zhijian Cao; Wenxin Li; Zongyun Chen; Yingliang Wu

Human potassium channels are widely inhibited by peptide toxins from venomous animals. However, no human endogenous peptide inhibitor has been discovered so far. In this study, we demonstrate for the first time using electrophysiological techniques, that endogenous human β–defensin 2 (hBD2) is able to selectively and dose-dependently inhibit the human voltage-gated Kv1.3 channel at picomolar peptide concentration. The co-immunoprecipitation assays further supported the selective binding of hBD2 to Kv1.3 channel. Using mutagenesis experiments, we found that the outer pore domain of Kv1.3 channel was the binding site of hBD2, which is similar to the interacting site of Kv1.3 channel recognized by animal toxin inhibitors. The hBD2 was able to suppress IL-2 production through inhibition of Kv1.3 channel currents in human Jurkat cells, which was further confirmed by the lack of hBD2 activity on IL-2 production after Kv1.3 knockdown in these cells. More interestingly, hBD2 was also found to efficiently inhibit Kv1.3 channel currents and suppress IL-2 production in both human primary CD3+ T cells and peripheral mononuclear cells from either healthy donors or psoriasis patients. Our findings not only evidenced hBD2 as the first characterized endogenous peptide inhibitor of human potassium channels, but also paved a promising avenue to investigate newly discovered function of hBD2 as Kv1.3 channel inhibitor in the immune system and other fields.


Biochemical and Biophysical Research Communications | 2014

Unusual binding mode of scorpion toxin BmKTX onto potassium channels relies on its distribution of acidic residues

Zongyun Chen; Youtian Hu; Jun Hu; Weishan Yang; Jean-Marc Sabatier; Michel De Waard; Zhijian Cao; Wenxin Li; Song Han; Yingliang Wu

Besides classical scorpion toxin-potassium channel binding modes, novel modes remain unknown. Here, we report a novel binding mode of native toxin BmKTX towards Kv1.3 channel. The combined experimental and computational data indicated that BmKTX-D33H analog used the classical anti-parallel β-sheet domain as the channel-interacting interface together with the conserved channel pore-blocking Lys(26). However, the wild-type BmKTX was found to use Arg(23) rather than Lys(26) as the new pore-blocking residue, and mainly adopt the turn motif between the α-helix and antiparallel β-sheet domains to recognize Kv1.3 channel. Together, these findings not only reveal that scorpion toxin-potassium channel interaction modes are more diverse than thought, but also highlight the functional role of toxin acidic residues in mediating diverse toxin-potassium channel binding modes.


Journal of Biological Chemistry | 2013

Two Conserved Arginine Residues from the SK3 Potassium Channel Outer Vestibule Control Selectivity of Recognition by Scorpion Toxins

Jing Feng; Youtian Hu; Hong Yi; Shijin Yin; Song Han; Jun Hu; Zongyun Chen; Weishan Yang; Zhijian Cao; Michel De Waard; Jean-Marc Sabatier; Wenxin Li; Yingliang Wu

Background: The SK channel mechanism that controls scorpion toxin recognition remains unknown. Results: Two conserved arginine residues in the SK3 channel outer vestibule were found to control toxin recognition. Conclusion: SK3 channel selectively controls toxin recognition through differential electrostatic repulsion forces between the channel vestibule and toxins. Significance: These findings expand our understanding of the diverse channel structures and functions and unlock the pharmacological potential of toxins. Potassium channel functions are often deciphered by using selective and potent scorpion toxins. Among these toxins, only a limited subset is capable of selectively blocking small conductance Ca2+-activated K+ (SK) channels. The structural bases of this selective SK channel recognition remain unclear. In this work, we demonstrate the key role of the electric charges of two conserved arginine residues (Arg-485 and Arg-489) from the SK3 channel outer vestibule in the selective recognition by the SK3-blocking BmP05 toxin. Indeed, individually substituting these residues with histidyl or lysyl (maintaining the positive electric charge partially or fully), although decreasing BmP05 affinity, still preserved the toxin sensitivity profile of the SK3 channel (as evidenced by the lack of recognition by many other types of potassium channel-sensitive charybdotoxin). In contrast, when Arg-485 or Arg-489 of the SK3 channel was mutated to an acidic (Glu) or alcoholic (Ser) amino acid residue, the channel lost its sensitivity to BmP05 and became susceptible to the “new” blocking activity by charybdotoxin. In addition to these SK3 channel basic residues important for sensitivity, two acidic residues, Asp-492 and Asp-518, also located in the SK3 channel outer vestibule, were identified as being critical for toxin affinity. Furthermore, molecular modeling data indicate the existence of a compact SK3 channel turret conformation (like a peptide screener), where the basic rings of Arg-485 and Arg-489 are stabilized by strong ionic interactions with Asp-492 and Asp-518. In conclusion, the unique properties of Arg-485 and Arg-489 (spatial orientations and molecular interactions) in the SK3 channel account for its toxin sensitivity profile.


Scientific Reports | 2015

Toxin acidic residue evolutionary function-guided design of de novo peptide drugs for the immunotherapeutic target, the Kv1.3 channel.

Zongyun Chen; Youtian Hu; Jing Hong; Jun Hu; Weishan Yang; Fang Xiang; Fan Yang; Zili Xie; Zhijian Cao; Wenxin Li; Donghai Lin; Yingliang Wu

During the long-term evolution of animal toxins acting on potassium channels, the acidic residues can orientate the toxin binding interfaces by adjusting the molecular polarity. Based on the evolutionary function of toxin acidic residues, de novo peptide drugs with distinct binding interfaces were designed for the immunotherapeutic target, the Kv1.3 channel. Using a natural basic toxin, BmKTX, as a template, which contains 2 acidic residues (Asp19 and Asp33), we engineered two new peptides BmKTX-19 with 1 acidic residue (Asp33), and BmKTX-196 with 2 acidic residues (Asp6 and Asp33) through only adjusting acidic residue distribution for reorientation of BmKTX binding interface. Pharmacological experiments indicated that BmKTX-19 and BmKTX-196 peptides were specific inhibitors of the Kv1.3 channel and effectively suppressed cytokine secretion. In addition to the structural similarity between the designed and native peptides, both experimental alanine-scanning mutagenesis and computational simulation further indicated that the binding interface of wild-type BmKTX was successfully reoriented in BmKTX-19 and BmKTX-196, which adopted distinct toxin surfaces as binding interfaces. Together, these findings indicate not only the promising prospect of BmKTX-19 and BmKTX-196 as drug candidates but also the desirable feasibility of the evolution-guided peptide drug design for discovering numerous peptide drugs for the Kv1.3 channel.


Toxins | 2015

Plectasin, First Animal Toxin-Like Fungal Defensin Blocking Potassium Channels through Recognizing Channel Pore Region

Fang Xiang; Zili Xie; Jing Feng; Weishan Yang; Zhijian Cao; Wenxin Li; Zongyun Chen; Yingliang Wu

The potassium channels were recently found to be inhibited by animal toxin-like human β-defensin 2 (hBD2), the first defensin blocker of potassium channels. Whether there are other defensin blockers from different organisms remains an open question. Here, we reported the potassium channel-blocking plectasin, the first defensin blocker from a fungus. Based on the similar cysteine-stabilized alpha-beta (CSαβ) structure between plectasin and scorpion toxins acting on potassium channels, we found that plectasin could dose-dependently block Kv1.3 channel currents through electrophysiological experiments. Besides Kv1.3 channel, plectasin could less inhibit Kv1.1, Kv1.2, IKCa, SKCa3, hERG and KCNQ channels at the concentration of 1 μΜ. Using mutagenesis and channel activation experiments, we found that outer pore region of Kv1.3 channel was the binding site of plectasin, which is similar to the interacting site of Kv1.3 channel recognized by animal toxin blockers. Together, these findings not only highlight the novel function of plectasin as a potassium channel inhibitor, but also imply that defensins from different organisms functionally evolve to be a novel kind of potassium channel inhibitors.


Journal of Biochemical and Molecular Toxicology | 2014

BF9, the First Functionally Characterized Snake Toxin Peptide with Kunitz-Type Protease and Potassium Channel Inhibiting Properties

Weishan Yang; Jing Feng; Bin Wang; Zhijian Cao; Wenxin Li; Yingliang Wu; Zongyun Chen

Although numerous Kunitz‐type toxins were isolated from snake venom, no bifunctional Kunitz‐type snake toxins with protease and potassium channel inhibiting properties have been reported till now. With the help of bioinformatics analyses and biological experiments, we characterized Kunitz‐type snake toxin BF9 as a bifunctional peptide. Enzyme and inhibitor reaction kinetics experiments showed that BF9 inhibited α‐chymotrypsin with Ki value of 1.8 × 10−8 M. Electrophysiological experiments showed that BF9 inhibited the Kv1.3 potassium channel with an IC50 of 120.0 nM, which demonstrated that serine protease inhibitor BF9 could also inhibit potassium channels. In addition, the key amino acids of BF9 responsible for the unique bifunctional mechanism are further investigated. To the best of our knowledge, BF9 is the first Kunitz‐type snake peptide with the unique bifunctionality of potassium channel and serine protease inhibiting properties, providing novel insights into divergent evolution and functional applications of snake Kunitz‐type peptides.

Collaboration


Dive into the Weishan Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zongyun Chen

Hubei University of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Feng

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge