Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weiwei Ding is active.

Publication


Featured researches published by Weiwei Ding.


Geochemistry Geophysics Geosystems | 2014

Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349

Chun-Feng Li; Xing Xu; Jian Lin; Zhen Sun; Jian Zhu; Yongjian Yao; Xixi Zhao; Qingsong Liu; Denise K. Kulhanek; Jian Wang; Taoran Song; Junfeng Zhao; Ning Qiu; Yongxian Guan; Zhiyuan Zhou; Trevor Williams; Anne Briais; Elizabeth A. Brown; Yifeng Chen; Peter D. Clift; Frederick S. Colwell; Kelsie A. Dadd; Weiwei Ding; Iván Hernández Almeida; Xiao-Long Huang; Sangmin Hyun; Tao Jiang; Anthony A. P. Koppers; Qianyu Li; Chuanlian Liu

Combined analyses of deep tow magnetic anomalies and International Ocean Discovery Program Expedition 349 cores show that initial seafloor spreading started around 33 Ma in the northeastern South China Sea (SCS), but varied slightly by 1-2 Myr along the northern continent-ocean boundary (COB). A southward ridge jump of approximate to 20 km occurred around 23.6 Ma in the East Subbasin; this timing also slightly varied along the ridge and was coeval to the onset of seafloor spreading in the Southwest Subbasin, which propagated for about 400 km southwestward from approximate to 23.6 to approximate to 21.5 Ma. The terminal age of seafloor spreading is approximate to 15 Ma in the East Subbasin and approximate to 16 Ma in the Southwest Subbasin. The full spreading rate in the East Subbasin varied largely from approximate to 20 to approximate to 80 km/Myr, but mostly decreased with time except for the period between approximate to 26.0 Ma and the ridge jump (approximate to 23.6 Ma), within which the rate was the fastest at approximate to 70 km/Myr on average. The spreading rates are not correlated, in most cases, to magnetic anomaly amplitudes that reflect basement magnetization contrasts. Shipboard magnetic measurements reveal at least one magnetic reversal in the top 100 m of basaltic layers, in addition to large vertical intensity variations. These complexities are caused by late-stage lava flows that are magnetized in a different polarity from the primary basaltic layer emplaced during the main phase of crustal accretion. Deep tow magnetic modeling also reveals this smearing in basement magnetizations by incorporating a contamination coefficient of 0.5, which partly alleviates the problem of assuming a magnetic blocking model of constant thickness and uniform magnetization. The primary contribution to magnetic anomalies of the SCS is not in the top 100 m of the igneous basement.


Marine Geophysical Researches | 2013

Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea

Weiwei Ding; Jiabiao Li; Jun Li; Yinxia Fang; Yong Tang

The Pearl River Canyon system is a typical canyon system on the northern continental slope of the South China Sea, which has significant implications for hydrocarbon exploration. Through swath bathymetry in the canyon area combined with different types of seismic data, we have studied the morphotectonics and controlling factors of the canyon by analyzing its morphology and sedimentary structure, as well as the main features of the continental slope around the canyon. Results show that the Pearl River Canyon can be separated into three segments with different orientations. The upper reach is NW-oriented with a shallowly incised course, whereas the middle and lower reaches, that are located mainly in the Baiyun Sag, have a broad U-shape and have experienced consistent deposition. Seventeen deeply-cut canyons have developed in the slope north of the Baiyun Sag, playing an important role in the sedimentary processes of the middle and lower reaches of the Pearl River Canyon. These canyons display both asymmetrical V- and U-shapes along their lengths. Numerous buried channels can be identified below the modern canyons with unidirectionally migrating stacking patterns, suggesting that the canyons have experienced a cyclic evolution with several cut and fill phases of varying magnitude. These long established canyons, rather than the upper reach of the Pearl River Canyon, are the main conduits for the transport of terrigenous materials to the lower slope and abyssal basin during lowstand stage, and have contributed to the formation of vertically stacked deep-water fans in the middle reach. Canyon morphology is interpreted as a result of erosive sediment flows. The Pearl River Canyon and the 17 canyons in the slope area north of the Baiyun Sag probably have developed since the Miocene. Cenozoic tectonics, sea level change and sediment supply jointly control the morphology and sedimentary structure. The middle and lower reaches of the Pearl River Canyon developed on the paleo-terrain of the Baiyun Sag, which has been a persistently rapid depositional environment, receiving most of the materials transported via the canyons.


Energy Exploration & Exploitation | 2014

Carbonate platforms in the Reed Bank area, South China Sea: seismic characteristics, development and controlling factors

Weiwei Ding; Jiabiao Li; Congzhi Dong; Yinxia Fang; Yong Tang; Jie Fu

We identify the seismic characteristics about the carbonate platform and other types of reefs in the Reed Bank area, South China Sea, based on a more than 220 km long multi-channel seismic reflection profile. From the Late Oligocene to Early Miocene, carbonate platforms were well developed featured with high-amplitude continuous reflections at the top and low-amplitude parallel reflections within. Reefal carbonate build-ups continued in structural highs almost up to the Middle Miocene, and even to present in the Reed Bank. The development of carbonate platforms and reefs were controlled by the tectonics and sea level changes in the study area synthetically. During the drifting stage of SCS the Reed Bank area was in a relatively stable condition. An everlasting shallow marine environment and low sediments input favored the formation of carbonate platforms. A sudden thermal subsidence after the cessation of SCSs opening in the Early Miocene and the continue rising of sea level made the carbonate platform drown and die. Reed Bank basin is a very promising area for further exploration work.


International Geology Review | 2018

Asymmetry in oceanic crustal structure of the South China Sea basin and its implications on mantle geodynamics

Fan Zhang; Jian Lin; Xubo Zhang; Weiwei Ding; Tingting Wang; Jian Zhu

ABSTRACT We investigated the oceanic crustal structure and lithospheric dynamics of the South China Sea (SCS) basin through a comprehensive analysis of residual gravity anomaly and bathymetry combined with seismic constraints and interpretation from geodynamic modelling. We first calculated the residual mantle Bouguer anomaly (RMBA) of the oceanic crustal regions of the SCS by removing from free-air gravity anomaly the predicted gravitational attractions of water-sediment, sediment-crust, and crust-mantle interfaces, as well as the effects of lithospheric plate cooling, using the latest crustal age constraints including IODP Expedition 349 and recent deep-tow magnetic surveys. We then calculated models of the gravity-derived crustal thickness and calibrated them using the available seismic refraction profiles of the SCS. The gravity-derived crustal thickness models correlate positively with seismically determined crustal thickness values. Our analysis revealed that the isochron-averaged RMBA are consistently more negative over the northern flank of the SCS basin than the southern conjugate for magnetic anomaly chrons C8n (~25.18 Ma) to C5Dn (~17.38 Ma), implying warmer mantle and/or thicker crust over much of the northern flank. Computational geodynamic modelling yielded the following interpretations: (1) Models of asymmetric and variable spreading rates based on the relatively high-resolution deep-tow magnetic analysis would predict alternating thicker and thinner crust at the northern flank than the southern conjugate, which is inconsistent with the observed systematically thicker crust on the northern flank. (2) Models of episodic southward ridge jumps could reproduce the observed N-S asymmetry, but only for crustal age of 23.6–20 Ma. (3) Southward migration of the SCS ridge axis would predict slightly thinner crust at the northern flank, which is inconsistent with the observations. (4) Models of higher mantle temperatures of up to 25–50°C or >2% less depleted mantle sources on the northern flank could produce large enough anomalies to explain the observed N-S asymmetries.


International Geology Review | 2018

Geochemistry of peridotites from the Yap Trench, Western Pacific: implications for subduction zone mantle evolution

Ling Chen; Limei Tang; Xiaohu Li; Yanhui Dong; Xing Yu; Weiwei Ding

ABSTRACT This study examines the major and trace elements of peridotites from the Yap Trench in the western Pacific to investigate mantle evolution beneath a subduction zone. Major element results show that the peridotites are low in Al2O3 (0.31–0.65 wt.%) and CaO (0.04–0.07 wt.%) contents and high in Mg# (Mg/(Mg+Fe)) (0.91–0.92) and have spinels with Cr# (Cr/(Cr+Al)) higher than 0.6 (0.61–0.73). Trace element results show that the peridotites have extremely low heavy rare earth element (HREE) contents compared with abyssal peridotites but have U-shaped chondrite-normalized rare earth element (REE) patterns. The degree of mantle melting estimated based on the major elements, HREEs, and spinel Cr# range from 19% to 25%, indicating that the Yap Trench peridotites may be residues of melting associated with the presence of water in the mantle source. In addition to light rare earth element (LREE) enrichment, the peridotites are characterized by high contents of highly incompatible elements, positive U and Sr anomalies, negative Ti anomalies, and high Zr/Hf ratios. The correlations between these elements and both the degree of serpentinization and high field strength element (HFSE) contents suggest that fluid alteration alone cannot account for the enrichment of the peridotites and that at least the enrichment of LREEs was likely caused by melt–mantle interaction. Comparison between the peridotites and the depletion trend defined by the primitive mantle (PM) and the depleted mantle (DM) suggests that the Yap Trench mantle was modified by subduction-related melt characterized by high contents of incompatible elements, high Zr/Hf ratios, and low HFSE contents. Hydrous melting may have been enhanced by tectonic erosion of the subducting Caroline Plate with complex tectonic morphostructures at the earliest stages of subduction initiation.


International Geology Review | 2018

Migration of the lower North Palawan submarine canyon: characteristics and controls

Shaoru Yin; Jiabiao Li; Weiwei Ding; Jinyao Gao; Weifeng Ding; Yuanyuan Wang

ABSTRACT The North Palawan Canyon is a large, previously undescribed submarine canyon that incises the continental shelf and slope of the southern South China Sea. Using multibeam bathymetric data and two-dimensional seismic reflection data, we have characterized current canyon morphology and documented lower-canyon migration in cross-section since the middle Miocene. We have also explored possible causes for the ancient migrations. The 175 km modern canyon is flanked by sediment waves outside its northern bank, and depositional lobes fan out from the canyon mouth. Over the past 15 million years, at least 20 cycles of significant canyon incising and infilling have occurred, along with significant canyon migration. This migration, as recorded in the sedimentary (seismic) record near a leftward bend in the canyon’s lower reach, can be divided into three stages: southward migration during the middle Miocene (averaging 1.24 km/m.y.), northward migration during the late Miocene (1.34 km/m.y.), and stationarity since the Pliocene. The overall zigzagging pattern of the canyon thalweg (as seen in cross-section through time) results from lateral and downstream migration in an aggradational environment. The early (middle to late Miocene) rapid zigzagging migration of the lower main channel, first southward and then northward, was probably associated with the strong collision of the North Palawan Block with the Philippine Mobile Belt, which would have triggered submarine instabilities and deformed the seafloor. The more recent (Pliocene and later) slowing or cessation of canyon migration is likely the result of the now quieter tectonic setting and long-term climatic cooling and drying.


International Geology Review | 2018

Sedimentary filling characteristics of the South China Sea oceanic basin, with links to tectonic activity during and after seafloor spreading

Shaoru Yin; Jiabiao Li; Weiwei Ding; Derek E. Sawyer; Ziyin Wu; Yong Tang

ABSTRACT Based on approximately 11,000 km of seismic reflection data collected across the South China Sea oceanic basin, we describe the sedimentary filling characteristics of the basin since its Oligocene opening, as well as connections between this history and contemporaneous regional tectonic events. The seismic lines are spaced ~50 km apart, and the data are tied to International Ocean Discovery Program (IODP) Expedition 349 drilling data. Basin filling occurred in three phases, with basin-wide mean sedimentation rates increasing through time. During the Oligocene to middle Miocene, sediments accumulated primarily in the northern East and Northwest Sub-basins, with a mean basin-wide sedimentation rate of 8 m/m.y. The presence of these deposits over deep basement floor indicates that seafloor spreading initiated in these northern regions. During the late Miocene, deposition occurred primarily in the Northwest Sub-basin and partly in the southern East Sub-basin, with a mean basin-wide sedimentation rate of 30 m/m.y. Basin filling during this time seems to have been linked to slip reversal of the Red River Fault and collision of the North Palawan Block with the Luzon Arc. During the Pliocene and Pleistocene, sediments accumulated rapidly in the northeastern and southern East Sub-basin and the Southwest Sub-basin. The mean basin-wide sedimentation rate was 70 m/m.y. Basin filling during this phase seems to have been associated with the Taiwan and North Palawan collisions, SCS subduction along the Manila Trench, and Tibetan Plateau uplift. Gravity flow deposits predominate throughout the basin fill.


Tectonophysics | 2013

Seismic stratigraphy and tectonic structure from a composite multi-channel seismic profile across the entire Dangerous Grounds, South China Sea

Weiwei Ding; Dieter Franke; Jiabiao Li; Stephan Steuer


Journal of Geophysical Research | 2015

Seismic stratigraphy of the central South China Sea basin and implications for neotectonics

Chun-Feng Li; Jiabiao Li; Weiwei Ding; Dieter Franke; Yongjian Yao; Hesheng Shi; Xiong Pang; Ying Cao; Jian Lin; Denise K. Kulhanek; Trevor Williams; Anne Briais; Elizabeth A. Brown; Yifeng Chen; Peter D. Clift; Frederick S. Colwell; Kelsie A. Dadd; Iván Hernández-Almeida; Xiao-Long Huang; Sangmin Hyun; Tao Jiang; Anthony A. P. Koppers; Qianyu Li; Chuanlian Liu; Qingsong Liu; Zhifei Liu; Renata H. Nagai; Alyssa Peleo-Alampay; Xin Su; Zhen Sun


Journal of Asian Earth Sciences | 2016

Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: Constraints from multi-channel seismic data and IODP Expedition 349

Weiwei Ding; Jiabiao Li; Peter D. Clift

Collaboration


Dive into the Weiwei Ding's collaboration.

Top Co-Authors

Avatar

Jiabiao Li

State Oceanic Administration

View shared research outputs
Top Co-Authors

Avatar

Yinxia Fang

State Oceanic Administration

View shared research outputs
Top Co-Authors

Avatar

Zhen Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Peter D. Clift

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Jian Lin

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Chongzhi Dong

State Oceanic Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qingsong Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge