Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weixiong Zhong is active.

Publication


Featured researches published by Weixiong Zhong.


Oncogene | 1997

Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase

Weixiong Zhong; Larry W. Oberley; Terry D. Oberley; Daret K. St. Clair

Manganese superoxide dismutase (MnSOD) has been previously shown to suppress the malignant phenotype of human melanoma and breast cancer cells. To test the possible role of MnSOD in glioma malignancy, MnSOD was overexpressed in wild type human glioma U118 cells and subcloned U118-9 cells by transfection of human MnSOD cDNA. The MnSOD-transfected cell lines demonstrated expression of exogenous (plasmid) MnSOD mRNA, increase in MnSOD immunoreactive protein, and a three- to eightfold increase in MnSOD enzymatic activity. The MnSOD overexpressing cell lines became less malignant as demonstrated by requiring a higher serum concentration to grow in vitro and much slower tumor growth in nude mice than the parental and neo control cell lines. These findings further support the hypothesis that MnSOD may be a tumor suppressor gene in a wide variety of human tumors.


The Prostate | 1998

Overexpression of manganese superoxide dismutase in DU145 human prostate carcinoma cells has multiple effects on cell phenotype

Ning Li; Terry D. Oberley; Larry W. Oberley; Weixiong Zhong

Recent studies suggest that the gene for manganese superoxide dismutase (MnSOD) is a candidate tumor‐suppressor gene. The present study was designed to study the effect of overexpression of MnSOD on cultured human prostate carcinoma cells.


American Journal of Transplantation | 2014

Diagnosis and management of antibody-mediated rejection: Current status and novel approaches

Arjang Djamali; Dixon B. Kaufman; Thomas M. Ellis; Weixiong Zhong; Arthur J. Matas; Millie Samaniego

Advances in multimodal immunotherapy have significantly reduced acute rejection rates and substantially improved 1‐year graft survival following renal transplantation. However, long‐term (10‐year) survival rates have stagnated over the past decade. Recent studies indicate that antibody‐mediated rejection (ABMR) is among the most important barriers to improving long‐term outcomes. Improved understanding of the roles of acute and chronic ABMR has evolved in recent years following major progress in the technical ability to detect and quantify recipient anti‐HLA antibody production. Additionally, new knowledge of the immunobiology of B cells and plasma cells that pertains to allograft rejection and tolerance has emerged. Still, questions regarding the classification of ABMR, the precision of diagnostic approaches, and the efficacy of various strategies for managing affected patients abound. This review article provides an overview of current thinking and research surrounding the pathophysiology and diagnosis of ABMR, ABMR‐related outcomes, ABMR prevention and treatment, as well as possible future directions in treatment.


Free Radical Biology and Medicine | 2001

Localization of the thioredoxin system in normal rat kidney

Terry D. Oberley; Eric G. Verwiebe; Weixiong Zhong; Sang Won Kang; Sue Goo Rhee

Components of the thioredoxin system were localized in normal rat kidney using immunoperoxidase techniques at the light microscopic level and immunogold techniques at the ultrastructural level. Results from both methods were similar. Thioredoxin, thioredoxin reductases, and peroxiredoxins showed cell-type-specific localization, with the same cell types (proximal and distal tubular epithelial, papillary collecting duct, and transitional epithelial cells) previously identified as having high amounts of antioxidant enzyme immunoreactive proteins and oxidative damage products also having high levels of proteins of the thioredoxin system. In addition, peroxiredoxins II and IV were found in high levels in the cytoplasm of red blood cells, identified in kidney blood vessels. While thioredoxin and thioredoxin reductase 1 were found in all subcellular locations in kidney cells, thioredoxin reductase 2 was found predominantly in mitochondria. Thioredoxin reductase 1 was identified in rat plasma, suggesting it is a secreted protein. Peroxiredoxins often had specific subcellular locations, with peroxiredoxins III and V found in mitochondria and peroxiredoxin IV found in lysosomes. Our results emphasize the complex nature of the thioredoxin system, demonstrating unique cell-type and organelle specificity.


Journal of Biological Chemistry | 2009

Role of sirtuin histone deacetylase Sirt1 in prostate cancer: A target for prostate cancer management via its inhibition?

Brittney Jung-Hynes; Minakshi Nihal; Weixiong Zhong; Nihal Ahmad

Prostate cancer (PCa) is a major age-related malignancy, and according to estimates from the American Cancer Society, a mans chance of developing this cancer significantly increases with increasing age, from 1 in 10,149 by age 39 to 1 in 38 by age 59 to 1 in 7 by age 70. Therefore, it is important to identify the causal connection between mechanisms of aging and PCa. Employing in vitro and in vivo approaches, in this study, we tested the hypothesis that SIRT1, which belongs to the Sir2 (silent information regulator 2) family of sirtuin class III histone deacetylases, is overexpressed in PCa, and its inhibition will have antiproliferative effects in human PCa cells. Our data demonstrated that SIRT1 was significantly overexpressed in human PCa cells (DU145, LNCaP, 22Rν1, and PC3) compared with normal prostate epithelial cells (PrEC) at protein, mRNA, and enzymatic activity levels. SIRT1 was also found to be overexpressed in human PCa tissues compared with adjacent normal prostate tissue. Interestingly, our data demonstrated that SIRT1 inhibition via nicotinamide and sirtinol (at the activity level) as well as via short hairpin RNA-mediated RNA interference (at the genetic level) resulted in a significant inhibition in the growth and viability of human PCa cells while having no effect on normal prostate epithelial cells. Further, we found that inhibition of SIRT1 caused an increase in FOXO1 acetylation and transcriptional activation in PCa cells. Our data suggested that SIRT1, via inhibiting FOXO1 activation, could contribute to the development of PCa. We suggest that SIRT1 could serve as a target toward developing novel strategies for PCa management.


Carcinogenesis | 2008

Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells

Nong Xiang; Rui Zhao; Guoqing Song; Weixiong Zhong

DNA hypermethylation is a common epigenetic alteration in human prostate cancer and is considered to contribute to development of this disease. Accumulating data suggest that dietary factors may alter cancer risk by modifications of epigenetic processes in the cell. The present study was designed to investigate whether selenium (Se) would alter epigenetic events to regulate methylation-silenced genes in human prostate cancer cells. DNA methylation, histone modifications and gene expression were studied in LNCaP cells after selenite treatment using polymerase chain reaction, western blot analysis, chromatin immunoprecipitation assay and enzymatic activity assay. Our study shows that selenite treatment caused partial promoter DNA demethylation and reexpression of the pi-class glutathione-S-transferase (GSTP1) in LNCaP cells in a dose- and time-dependent manner. Selenite treatment decreased messenger RNA levels of DNA methyltransferases (DNMTs) 1 and 3A and protein levels of DNMT1. Selenite also decreased histone deacetylase activity and increased levels of acetylated lysine 9 on histone H3 (H3-Lys 9), but decreased levels of methylated H3-Lys 9. Selenite treatment reduced levels of DNMT1 and methylated H3-Lys 9 associated with the GSTP1 promoter, but increased levels of acetylated H3-Lys 9 associated with this promoter. Additionally, selenite treatment decreased general DNA methylation and caused partial promoter demethylation and reexpression of the tumor suppressor adenomatous polyposis coli and cellular stress response 1, a gene involving tumor growth and metastasis. Our study demonstrates that Se can epigenetically modulate DNA and histones to activate methylation-silenced genes. These epigenetic modifications may contribute to cancer prevention by Se.


Cancer Research | 2006

Expression of p53 enhances selenite-induced superoxide production and apoptosis in human prostate cancer cells.

Rui Zhao; Nong Xiang; Frederick E. Domann; Weixiong Zhong

Although the anticancer effects of selenium have been shown in clinical, preclinical, and laboratory studies, the underlying mechanism(s) remains unclear. Our previous study showed that sodium selenite induced LNCaP human prostate cancer cell apoptosis in association with production of reactive oxygen species, alteration of cell redox state, and mitochondrial damage. In the present study, we showed that selenite-induced apoptosis was superoxide mediated and p53 dependent via mitochondrial pathways. In addition, we also showed that superoxide production by selenite was p53 dependent. Our study showed that wild-type p53-expressing LNCaP cells were more sensitive to selenite-induced apoptosis than p53-null PC3 cells. Selenite treatment resulted in high levels of superoxide production in LNCaP cells but only low levels in PC3 cells. LNCaP cells also showed sequential increases in levels of phosphorylated p53 (serine 15), total p53, Bax, and p21(Waf1) proteins following selenite treatment. The effects of selenite were suppressed by pretreatment with a synthetic superoxide dismutase mimic or by knockdown of p53 via RNA interference. LNCaP cells treated with selenite also showed p53 translocation to mitochondria, cytochrome c release into the cytosol, and activation of caspase-9. On the other hand, restoration of wild-type p53 expression in PC3 cells increased cellular sensitivity to selenite and resulted in increased superoxide production, caspase-9 activation, and apoptosis following selenite treatment. These results suggest that selenite induces apoptosis by producing superoxide to activate p53 and to induce p53 mitochondrial translocation. Activation of p53 in turn synergistically enhances superoxide production and apoptosis induced by selenite.


Clinical Cancer Research | 2009

Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator.

Bilal Bin Hafeez; Vaqar M. Adhami; Mohammad Asim; Imtiaz A. Siddiqui; Kumar M.R. Bhat; Weixiong Zhong; Mohammad Saleem; Maria Din; Vijayasaradhi Setaluri; Hasan Mukhtar

Purpose:Notch, a type 1 transmembrane protein, plays a key role in the development of many tissues and organ types. Aberrant Notch signaling, found in a wide variety of human cancers, contributes to tumor development. Because Notch1 was found to be overexpressed in prostate cancer (PCa) cells and human PCa tissue, we therefore tested our hypothesis that overexpression of Notch1 in PCa promotes tumor invasion. Experimental Design:Notch1 expression was evaluated in human PCa cells and human PCa tissues. PCa cells were transiently transfected with Notch1-specific small interfering RNAs in concentrations ranging from 30 to 120 nmol/L and subsequently evaluated for effects on invasion and expression analysis for molecules involved in invasion. Results: Small interfering RNA–mediated knockdown of Notch1 in PC3 and 22Rν1 PCa cells dramatically decreased their invasion. Focused cDNA array revealed that Notch1 knockdown resulted in significant reduction in the expression of urokinase plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP9) gene transcripts. These data were further verified by reverse transcription-PCR, real-time reverse transcription-PCR, and immunoblot analysis. Knockdown of Notch1 was also observed to significantly reduce the mRNA expression and protein levels of uPA and its receptor uPAR. A significant reduction in MMP9 expression in Notch1 knockdown cells suggested a role for Notch1 in augmenting MMP9 transcription. Conclusions: Our data show the involvement of Notch1 in human PCa invasion and that silencing of Notch1 inhibits invasion of human PCa cells by inhibiting the expression of MMP9 and uPA. Thus, targeting of Notch1 could be an effective therapeutic approach against PCa.


The Prostate | 2000

Localization of antioxidant enzymes and oxidative damage products in normal and malignant prostate epithelium

Terry D. Oberley; Weixiong Zhong; Luke I. Szweda; Larry W. Oberley

The risk for prostate cancer seems to be reduced by certain antioxidant compounds (vitamins E and A, and selenium).


Cancer Research | 2007

Protein Kinase Cε Interacts with Signal Transducers and Activators of Transcription 3 (Stat3), Phosphorylates Stat3Ser727, and Regulates Its Constitutive Activation in Prostate Cancer

Moammir H. Aziz; Herbert Manoharan; Dawn R. Church; Nancy E. Dreckschmidt; Weixiong Zhong; Terry D. Oberley; George Wilding; Ajit K. Verma

Prostate cancer is the most common type of cancer in men and ranks second only to lung cancer in cancer-related deaths. The management of locally advanced prostate cancer is difficult because the cancer often becomes hormone insensitive and unresponsive to current chemotherapeutic agents. Knowledge about the regulatory molecules involved in the transformation to androgen-independent prostate cancer is essential for the rational design of agents to prevent and treat prostate cancer. Protein kinase Cepsilon (PKCepsilon), a member of the novel PKC subfamily, is linked to the development of androgen-independent prostate cancer. PKCepsilon expression levels, as determined by immunohistochemistry of human prostate cancer tissue microarrays, correlated with the aggressiveness of prostate cancer. The mechanism by which PKCepsilon mediates progression to prostate cancer remains elusive. We present here for the first time that signal transducers and activators of transcription 3 (Stat3), which is constitutively activated in a wide variety of human cancers, including prostate cancer, interacts with PKCepsilon. The interaction of PKCepsilon with Stat3 was observed in human prostate cancer, human prostate cancer cell lines (LNCaP, DU145, PC3, and CW22rv1), and prostate cancer that developed in transgenic adenocarcinoma of mouse prostate mice. In reciprocal immunoprecipitation/blotting experiments, prostatic Stat3 coimmunoprecipitated with PKCepsilon. Localization of PKCepsilon with Stat3 was confirmed by double immunofluorescence staining. The interaction of PKCepsilon with Stat3 was PKCepsilon isoform specific. Inhibition of PKCepsilon protein expression in DU145 cells using specific PKCepsilon small interfering RNA (a) inhibited Stat3Ser727 phosphorylation, (b) decreased both Stat3 DNA-binding and transcriptional activity, and (c) decreased DU145 cell invasion. These results indicate that PKCepsilon activation is essential for constitutive activation of Stat3 and prostate cancer progression.

Collaboration


Dive into the Weixiong Zhong's collaboration.

Top Co-Authors

Avatar

Terry D. Oberley

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bilal Bin Hafeez

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ajit K. Verma

Stord/Haugesund University College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arjang Djamali

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Nihal Ahmad

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minakshi Nihal

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Rui Zhao

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ala Mustafa

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge