Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weiya Xue is active.

Publication


Featured researches published by Weiya Xue.


Nature Genetics | 2008

Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice

Weiya Xue; Yongzhong Xing; Xiaoyu Weng; Yu Zhao; Weijiang Tang; Lei Wang; Hongju Zhou; Sibin Yu; Caiguo Xu; Xianghua Li; Qifa Zhang

Yield potential, plant height and heading date are three classes of traits that determine the productivity of many crop plants. Here we show that the quantitative trait locus (QTL) Ghd7, isolated from an elite rice hybrid and encoding a CCT domain protein, has major effects on an array of traits in rice, including number of grains per panicle, plant height and heading date. Enhanced expression of Ghd7 under long-day conditions delays heading and increases plant height and panicle size. Natural mutants with reduced function enable rice to be cultivated in temperate and cooler regions. Thus, Ghd7 has played crucial roles for increasing productivity and adaptability of rice globally.


Genetics | 2005

Genetic Basis of Drought Resistance at Reproductive Stage in Rice: Separation of Drought Tolerance From Drought Avoidance

Bing Yue; Weiya Xue; Lizhong Xiong; Xinqiao Yu; Li-Jun Luo; Kehui Cui; Deming Jin; Yongzhong Xing; Qifa Zhang

Drought tolerance (DT) and drought avoidance (DA) are two major mechanisms in drought resistance of higher plants. In this study, the genetic bases of DT and DA at reproductive stage in rice were analyzed using a recombinant inbred line population from a cross between an indica lowland and a tropical japonica upland cultivar. The plants were grown individually in PVC pipes and two cycles of drought stress were applied to individual plants with unstressed plants as the control. A total of 21 traits measuring fitness, yield, and the root system were investigated. Little correlation of relative yield traits with potential yield, plant size, and root traits was detected, suggesting that DT and DA were well separated in the experiment. A genetic linkage map consisting of 245 SSR markers was constructed for mapping QTL for these traits. A total of 27 QTL were resolved for 7 traits of relative performance of fitness and yield, 36 QTL for 5 root traits under control, and 38 for 7 root traits under drought stress conditions, suggesting the complexity of the genetic bases of both DT and DA. Only a small portion of QTL for fitness- and yield-related traits overlapped with QTL for root traits, indicating that DT and DA had distinct genetic bases.


Theoretical and Applied Genetics | 2005

Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil

Bing Yue; Lizhong Xiong; Weiya Xue; Yongzhong Xing; Lijun Luo; Caiguo Xu

Drought resistance of rice is a complex trait and is mainly determined by mechanisms of drought avoidance and drought tolerance. The present study was conducted to characterize the genetic basis of drought resistance at reproductive stage in field by analyzing the QTLs for drought response index (DRI, normalized by potential yield and flowering time), relative yield, relative spikelet fertility, and four traits of plant water status and their relationships with root traits using a recombinant inbred population derived from a cross between an indica rice and upland rice. A total of 39 QTLs for these traits were detected with individual QTL explained 5.1–32.1% of phenotypic variation. Only two QTLs for plant water status were commonly detected in two environments, suggesting different mechanisms might exist in two types of soil conditions. DRI has no correlation with potential yield and flowering time under control, suggesting that it can be used as a good drought resistance index in field conditions. The co-location of QTLs for canopy temperature and delaying in flowering time suggested a usefulness of these two traits as indexes in drought resistance screening. Correlation and QTL congruence between root traits and putative drought tolerance traits revealed that drought avoidance (via thick and deep root traits) was the main genetic basis of drought resistance in sandy soil condition, while drought tolerance may play more role in the genetic basis of drought resistance in paddy soil condition. Therefore, both drought mechanisms and soil textures must be considered in the improvement of drought resistance at reproductive stage in rice.


Acta Genetica Sinica | 2006

QTL Analysis for Flag Leaf Characteristics and Their Relationships with Yield and Yield Traits in Rice

Bing Yue; Weiya Xue; Li-Jun Luo; Yongzhong Xing

Photosynthesis of carbohydrate is the primary source of grain yield in rice (Oryza sativa L.). It is important to genetically analyze the morphological and the physiological characteristics of functional leaves, especially flag leaf, in rice improvement. In this study, a recombinant inbred population derived from a cross between an indica (O. sativa L. ssp. indica) cultivar and a japonica (O. sativa L. ssp. japonica) cultivar was employed to map quantitative traits loci (QTLs) for the morphological (i.e., leaf length, width, and area) and physiological (i.e., leaf color rating and stay-green) characteristics of flag leaf and their relationships with yield and yield traits in 2003 and 2004. A total of 17 QTLs for morphological traits (flag leaf length, width, and area), 6 QTLs for degree of greenness and 14 QTLs for stay-green-related traits (retention-degrees of greenness, relative retention of greenness, and retention of the green area) were resolved, and 10 QTLs were commonly detected in both the years. Correlation analysis revealed that flag leaf area increased grain yield by increasing spikelet number per panicle. However, the physiological traits including degree of greenness and stay-green traits were not or negatively correlated to grain yield and yield traits, which may arise from the negative relation between degree of greenness and flag leaf size and the partial sterility occurred in a fraction of the lines in this population. The region RM255-RM349 on chromosome 4 controlled the three leaf morphological traits simultaneously and explained a large part of variation, which was very useful for genetic improvement of grain yield. The region RM422-RM565 on chromosome 3 was associated with the three stay-green traits simultaneously, and the use of this region in genetic improvement of grain yield needs to be assessed by constructing near-isogenic lines.


Journal of Genetics and Genomics | 2008

Identification of quantitative trait loci for four morphologic traits under water stress in rice (Oryza sativa L.).

Bing Yue; Weiya Xue; Lijun Luo; Yongzhong Xing

Late season drought coinciding with the rice booting to heading stage affects the development of plant height, panicle exsertion, and flag leaf size, and causes significant yield loss. In this study, a recombinant inbred line population derived from a cross between paddy and upland cultivars was used for data collection of the morphologic traits under well water and drought stress conditions. Drought stress was applied at the stage of panicle initiation in the field in 2002 and at the booting stage in PVC pipes in 2003. The data from stress conditions and their ratios (trait measured under stress condition/trait measured under well water condition) or differences (trait measured under stress condition minus trait measured under well water condition) were used for QTL analysis. Totally, 17 and 36 QTLs for these traits were identified in 2002 and 2003, respectively, which explained a range of 2.58%-29.82% of the phenotypic variation. Among them, six QTLs were commonly identified in the two years, suggesting that the drought stress in the two years was different. The genetic basis of these traits will provide useful information for improving rice late season drought resistance, and their application as indirect indices in rice late season drought resistance screening was also discussed.


Euphytica | 2010

Comparison of quantitative trait loci for 1,000-grain weight and spikelets per panicle across three connected rice populations

Touming Liu; Yushan Zhang; Weiya Xue; Caiguo Xu; Xianghua Li; Yongzhong Xing

The ability to detect quantitative trait loci (QTLs) in a bi-allelic population is often limited. The power of QTL detection and identification of the most beneficial allele at each QTL could be greatly improved by comparing QTLs among different populations derived from connecting multi-parents. In this study, three sets of connected recombinant inbred lines (RILs) derived from the crosses between Zhenshan 97 and Minghui 63 (PZM), Zhenshan 97 and Teqing (PZT), and Minghui 63 and Teqing (PMT), respectively, were used. QTL analyses for the number of spikelets per panicle (SPP) and 1,000-grain weight (TGW) were performed in PZT, and five SPP QTLs on chromosomes 1, 6, and 7 and two TGW QTLs on chromosome 1 were detected. QTL for SPP was also identified in PMT, and six QTLs were detected on chromosomes 1, 2, 3, 6, and 7 in this population. In an earlier study, we identified five SPP QTLs and four TGW QTLs in PMT and nine TGW QTLs in PZM. Comparison of the QTL mapping results of these two studies showed that one QTL was common to the three populations, 11 QTLs were detected in two populations, and six QTLs were found in only one population. Comparison of genetic effect and the action direction of the QTLs detected in the three populations showed that additive effects of QTLs estimated in different populations were also expressed additively among three parental alleles. Additive effects of SPP7a estimated in three near-isogenic line F2 populations supported this finding. Based on these results, we suggest that pyramiding the most beneficial alleles among the three parents could efficiently improve rice yield.


Acta Genetica Sinica | 2006

Identification of Quantitative Trait Loci for ABA Sensitivity at Seed Germination and Seedling Stages in Rice

Jun You; Qiang Li; Bing Yue; Weiya Xue; Li-Jun Luo; Lizhong Xiong

Abscisic acid (ABA) is one of the important plant hormones, which plays a critical role in seed development and adaptation to abiotic stresses. The sensitivity of rice (Oryza sativa L.) to exogenous ABA at seed germination and seedling stages was investigated in the recombinant inbred line (RIL) population derived from a cross between irrigated rice Zhenshan 97 and upland rice IRAT109, using relative germination vigor (RGV), relative germination rate (RGR) and leaf rolling scores of spraying (LRS) or culturing (LRC) with ABA as sensitivity indexes. The phenotypic correlation analysis revealed that only RGV at germination stage was positively correlated to ABA sensitivity at seedling stage. QTL detection using composite interval mapping (CIM) and mixed linear model was conducted to dissect the genetic basis of ABA sensitivity, and the single-locus QTLs detected by both methods are in good agreement with each other. Five single QTLs and six pairs of epistatic QTLs were detected for ABA sensitivity at germination stage. Eight single QTLs and five pairs of epistatic QTLs were detected for ABA sensitivity at seedling stage. Two QTLs were common between LRS and LRC; and one common QTL was detected for RGV, LRS and LRC simultaneously. These results indicated that both single and epistatic loci were involved in the ABA sensitivity in rice, and the genetic basis of ABA sensitivity at seed germination and seedling stage was largely different.


Euphytica | 2006

Molecular marker-assisted dissection of quantitative trait loci for seven morphological traits in rice (Oryza sativa L.)

Bing Yue; Kehui Cui; Shibin Yu; Weiya Xue; Lijun Luo; Yongzhong Xing

SummaryThe genetic dissection of morphological traits can helpful to evaluate their potential values as markers for rice genetic improvement. In this study, a RI population derived from a cross from Zhenshan97 and IRAT109 was used to dissect the genetic bases of seven morphological traits such as leaf sheath color (LSC), grain apiculus color (GAC), grain hairiness density (GHD), grain awn length (GAL), ratio of leaf length to width (RLW), leaf erectness (LER) and natural leaf rolling status (NLR). Totally, 26 main-effect QTLs and 22 epistatic QTLs were detected. Of them, 11 main-effect and 3 epistatic QTLs expressed environmental interactions. GAC controlled by a single gene could be regarded as the most useful marker. LSC controlled by two major interacted main-effect QTLs, but with no environmental interaction, is suitable to become morphological marker. LSC will be a very efficient morphological marker for identification of hybrid plants at rice seedling stage when the two major QTLs are introduced into male sterile line and restorer line separately. GHD controlled by a major QTL and a few minor QTLs with comparative low QEIs could also be used as marker. The traits GAL, NLR, RLW and LER, which were controlled by a number of minor effect QTLs and affected by environmental conditions could not be used as marker. But the QTLs with large effects, such as nrl8, can be targeted for corresponding trait improvement through marker-aided selection in rice breeding.


Theoretical and Applied Genetics | 2008

Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice

Yongzhong Xing; Wei Tang; Weiya Xue; C. G. Xu; Qifa Zhang


Archive | 2008

Clone and application of pleiotropy gene Ghd7 used for controlling rice grain production, ear sprouting period and plant height

Yongzhong Xing; Qifa Zhang; Weiya Xue

Collaboration


Dive into the Weiya Xue's collaboration.

Top Co-Authors

Avatar

Yongzhong Xing

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bing Yue

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qifa Zhang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Caiguo Xu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lizhong Xiong

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kehui Cui

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lijun Luo

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xianghua Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

C. G. Xu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hongju Zhou

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge