Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weizhe Zhang is active.

Publication


Featured researches published by Weizhe Zhang.


PLOS ONE | 2013

Distribution and Genetic Characterizations of Cryptosporidium spp. in Pre-Weaned Dairy Calves in Northeastern China’s Heilongjiang Province

Weizhe Zhang; Rongjun Wang; Fengkun Yang; Longxian Zhang; Jianping Cao; Xiaoli Zhang; Hong Ling; Aiqin Liu; Yujuan Shen

Background Cryptosporidium spp. are common parasites of humans and animals. Farm animals, especially pre-weaned calves, are considered to be one of main animal reservoir hosts of Cryptosporidium in the transmission of human cryptosporidiosis. The aim of this study was to determine the distribution and genotypes of Cryptosporidium spp. in pre-weaned calves using molecular tools and to assess zoonotic transmission and elucidate the public health significance in northeastern China. Methodology/Principal Findings A total of 151 fecal specimens from pre-weaned calves were collected in Heilongjiang Province and were screened for Cryptosporidium by PCR. The average prevalence of Cryptosporidium was 47.68% (72/151). Cryptosporidium spp. were characterized by DNA sequencing of the small subunit (SSU) rRNA gene and the 60-kDa glycoprotein (gp60) gene. Based on the SSU rRNA gene, five Cryptosporidium spp. were identified, including C. bovis (n = 34), C. andersoni (n = 26), C. ryanae (n = 5), C. meleagridis (n = 5) and C. parvum (n = 2). The SSU rRNA nucleotide sequences were identical to each other, respectively, within C. ryanae, C. parvum, C. meleagridis and C. andersoni. Four types of C. bovis were found in the SSU rRNA gene, with two novel types. The gp60 gene was successfully sequenced in one C. parvum isolate and three C. meleagridis isolates, with IIdA19G1 for C. parvum and IIIeA22G2R1 for C. meleagridis. Conclusion/Significance Molecular analysis indicates that Cryptosporidium spp. are endemic in pre-weaned calves in Heilongjiang Province. The findings of C. parvum and C. meleagridis suggested the possibility of zoonotic transmission and public health significance. The transmission dynamics of C. parvum and C. meleagridis needed to be clarified by further molecular epidemiologic studies from humans and animals. Whether calves could act as the natural reservoirs of C. meleagridis needed to be confirmed by more systematic experimental infection studies.


PLOS Neglected Tropical Diseases | 2012

Genetic characterizations of Giardia duodenalis in sheep and goats in Heilongjiang Province, China and possibility of zoonotic transmission.

Weizhe Zhang; Xiaoli Zhang; Rongjun Wang; Aiqin Liu; Yujuan Shen; Hong Ling; Jianping Cao; Fengkun Yang; Xiaoyun Zhang; Longxian Zhang

Background Giardia duodenalis is a widespread intestinal protozoan of both humans and mammals. To date, few epidemiological studies have assessed the potential and importance of zoonotic transmission; and the human giardiasis burden attributable to G. duodenalis of animal origin is unclear. No information about occurrence and genotyping data of sheep and goat giardiasis is available in China. The aim of the present study was to determine prevalence and distribution of G. duodenalis in sheep and goats in Heilongjiang Province, China, and to characterize G. duodenalis isolates and assess the possibility of zoonotic transmission. Methodology/Principal Findings A total of 678 fecal specimens were collected from sheep and goats on six farms ranging in age from one month to four years in Heilongjiang Province, China. The average prevalence of G. duodenalis infection was 5.0% (34/678) by microscopy after Lugols iodine staining, with 5.6% (30/539) for the sheep versus 2.9% (4/139) for the goats. Molecular analysis was conducted on 34 G. duodenalis isolates based on the triosephosphate isomerase (tpi) gene. 29 tpi gene sequences were successfully obtained and identified as assemblages A (n = 4), B (n = 2) and E (n = 23). High heterogeneity was observed within assemblage E at the tpi locus, with five novel subtypes found out of seven subtypes. Two subtypes of assemblage A were detected, including subtype AI (n = 3) and a novel subtype (designated as subtype AIV) (n = 1). Two assemblage B isolates were identical to each other in the tpi gene sequences. Conclusions/Significance This is the first report of G. duodenalis infections in sheep and goats in China. The present data revealed the unique endemicity on prevalence, distribution and genetic characterization of G. duodenalis in sheep and goats in Heilongjiang Province. The findings of assemblages A and B in sheep and goats implied the potential of zoonotic transmission.


PLOS ONE | 2012

Cryptosporidium cuniculus and Giardia duodenalis in rabbits: genetic diversity and possible zoonotic transmission.

Weizhe Zhang; Yujuan Shen; Rongjun Wang; Aiqin Liu; Hong-Qing Ling; Yihong Li; Jianping Cao; Xiaoyun Zhang; Jing Shu; Longxian Zhang

Background Cryptosporidium and Giardia are the two important zoonotic pathogens causing diarrhea of humans and animals worldwide. Considering the human cryptosporidiosis outbreak and sporadic cases caused by C. cuniculus, the important public health significance of G. duodenalis and little obtained information regarding rabbit infected with Cryptosporidium and Giardia in China, the aim of this study is to determine the prevalence and molecularly characterize Cryptosporidium and Giardia in rabbits in Heilongjiang Province, China. Methodology/Principal Findings 378 fecal samples were obtained from rabbits in Heilongjiang Province. Cryptosporidium oocysts and Giardia cysts were detected using Sheathers sugar flotation technique and Lugols iodine stain method, respectively. The infection rates of Cryptosporidium and Giardia were 2.38% (9/378) and 7.41% (28/378), respectively. Genotyping of Cryptosporidium spp. was done by DNA sequencing of the small subunit rRNA (SSU rRNA) gene and all the nine isolates were identified as Cryptosporidium cuniculus. The nine isolates were further subtyped using the 60-kDa glycoprotein (gp60) gene and two subtypes were detected, including VbA32 (n = 3) and a new subtype VbA21 (n = 6). G. duodenalis genotypes and subtypes were identified by sequence analysis of the triosephosphate isomerase (TPI) gene. The assemblage B (belonging to eight different subtypes B-I to B-VIII) was found in 28 G. duodenalis-positive samples. Conclusions/Significance The rabbits have been infected with Cryptosporidium and Giardia in Heilongjiang Province. The results show that the rabbits pose a threat to human health in the studied areas. Genotypes and subgenotypes of C. cuniculus and G. duodenalis in this study might present the endemic genetic characterization of population structure of the two parasites.


Applied and Environmental Microbiology | 2014

High Prevalence of Enterocytozoon bieneusi in Asymptomatic Pigs and Assessment of Zoonotic Risk at the Genotype Level

Wei Zhao; Weizhe Zhang; Fengkun Yang; Jianping Cao; Hua Liu; Dong Yang; Yujuan Shen; Aiqin Liu

ABSTRACT Enterocytozoon bieneusi is an emerging and clinically significant enteric parasite infecting humans and animals and can cause life-threatening diarrhea in immunocompromised people. Pigs are considered to be one of the main reservoir hosts of E. bieneusi based on their high prevalence rates and zoonotic genotypes in pigs. As an opportunistic pathogen, E. bieneusi infection of pigs can be inapparent, which leads to neglect in detecting this parasite in pigs and assessing the epidemiological role of pigs in the transmission of human microsporidiosis. In the present study, 95 healthy pigs aged 2 or 3 months were randomly selected from three areas in Heilongjiang Province, China. E. bieneusi isolates were identified and genotyped based on the small-subunit (SSU) rRNA and internal transcribed spacer (ITS) regions of the rRNA gene by PCR and sequencing. A high prevalence of E. bieneusi was observed, 83.2% (79/95) at the SSU rRNA locus versus 89.5% (85/95) at the ITS locus. Ten ITS genotypes were obtained, comprising six known genotypes—EbpA (n = 30), D (n = 19), H (n = 18), O (n = 11), CS-1 (n = 1), and LW1 (n = 1)—and four novel genotypes named HLJ-I to HLJ-IV; 70.6% (60/85) of E. bieneusi genotypes were zoonotic (genotypes EbpA, D, and O). The findings of a high prevalence of E. bieneusi in pigs and a large percentage of zoonotic genotypes indicate that pigs may play a role in the transmission of E. bieneusi to humans and may become an important source of water contamination in our investigated areas.


Journal of Eukaryotic Microbiology | 2015

Enterocytozoon bieneusi in Dairy Cattle in the Northeast of China: Genetic Diversity of ITS Gene and Evaluation of Zoonotic Transmission Potential

Wei Zhao; Weizhe Zhang; Fengkun Yang; Longxian Zhang; Rongjun Wang; Jianping Cao; Yujuan Shen; Aiqin Liu

Enterocytozoon bieneusi is the most frequently diagnosed microsporidian species in humans. It has been found in a wide range of animals and is considered an important zoonotic pathogen. To date, little information is available on the role that cattle play in the epidemiology of human microsporidiosis caused by E. bieneusi in China. In this study, 133 fecal specimens from dairy cattle were collected in Heilongjiang Province, China. Enterocytozoon bieneusi was identified and genotyped by nested PCR analysis of the internal transcribed spacer (ITS) region of the rRNA gene, with 30.1% positive. Nine ITS genotypes were identified: six known genotypes—O (n = 26), EbpA (n = 2), I (n = 2), J (n = 2), D (n = 1) and BEB4 (n = 1)—and three novel genotypes named as CC‐I to CC‐III (two each). Genotype O was identified in cattle for the first time. The observation of all the six known genotypes here reported previously in humans, and also the fact of all the three novel genotypes (CHN‐DC1 to CHN‐DC3) falling into zoonotic group 1, indicate the possibility of cattle in the transmission of E. bieneusi to humans.


Infection, Genetics and Evolution | 2015

Prevalence of Enterocytozoon bieneusi and genetic diversity of ITS genotypes in sheep and goats in China

Wei Zhao; Weizhe Zhang; Dong Yang; Longxian Zhang; Rongjun Wang; Aiqin Liu

Enterocytozoon bieneusi is the most common microsporidia species, recognized in more than 90% cases of human microsporidiosis and has been found in a variety of animal hosts. To explore the prevalence of E. bieneusi in sheep and goats in China, genetic diversity and zoonotic potential of E. bieneusi, 193 fecal specimens from 138 sheep and 55 goats from eight farms in Heilongjiang Province, China were analyzed for the occurrence of E. bieneusi by PCR and sequencing of the single internal transcribed spacer (ITS) of the rRNA gene. The average prevalence of E. bieneusi was 22.3% (43/193), with 22.5% (31/138) for sheep versus 21.8% (12/55) for goats. Altogether 14 genotypes of E. bieneusi were identified, including six known genotypes-BEB6 (n=15), Peru6 (8), D (n=6), O (n=3), EbpC (n=2), and EbpA (n=1)-and eight novel genotypes named COS-I to COS-VII and COG-I (one each). Six of the genotypes were previously detected in humans. In phylogenetic analysis, the five novel genotypes COG-I and CCOS-IV to COS-VII were clustered into group 1 with zoonotic potential. These results indicate that these animals may play a potential role in the transmission of E. bieneusi to humans.


Parasitology Research | 2011

Molecular identification and distribution of Cryptosporidium and Giardia duodenalis in raw urban wastewater in Harbin, China.

Aiqin Liu; Hong Ji; Ensheng Wang; Jingbo Liu; Lihua Xiao; Yujuan Shen; Yihong Li; Weizhe Zhang; Hong Ling

Contamination of the water supply by protozoa often causes outbreaks of cryptosporidiosis and giardiasis. The goals of the present study was to investigate the level of Cryptosporidium and Giardia duodenalis in wastewater from wastewater treatment plants in Harbin, China, and to understand the endemic transmission characteristics of cryptosporidiosis and giardiasis. Forty-eight domestic wastewater specimens from the two wastewater treatment plants in Harbin City were collected from April 2009 to March 2010. Cryptosporidium spp. and G. duodenalis assemblages were identified by PCR and sequencing of the 18S ribosomal RNA and the triosephosphate isomerase genes, respectively. In total, 15 wastewater specimens were PCR positive for Cryptosporidium and 23 were PCR positive for G. duodenalis. The prevalence of contamination with G. duodenalis (47.9%) was higher than that of Cryptosporidium (31.3%). Molecular identification showed the presence of two Cryptosporidium spp. (14 belonging to Cryptosporidium andersoni and one belonging to Cryptosporidium ubiquitum) and two G. duodenalis assemblages (18 belonging to assemblage AII and six belonging to assemblage B). In addition, eight specimens contained both Cryptosporidium and G. duodenalis, and one specimen contained G. duodenalis assemblages AII and B. These results suggested humans might be the primary source of G. duodenalis contamination in wastewater in the studied area. In contrast, a low prevalence of C. ubiquitum suggested a reduced risk of human cryptosporidiosis caused by C. ubiquitum via waterborne route. This work provides basic experimental data needed for local wastewater treatment plants to develop protective strategies for water safety and to eliminate waterborne parasites.


PLOS ONE | 2015

Genotyping of Enterocytozoon bieneusi in Farmed Blue Foxes (Alopex lagopus) and Raccoon Dogs (Nyctereutes procyonoides) in China

Wei Zhao; Weizhe Zhang; Ziyin Yang; Aiqin Liu; Longxian Zhang; Fengkun Yang; Rongjun Wang; Hong Ling

Enterocytozoon bieneusi is the most common species of microsporidia found both in humans and animals. Farmed animals, particularly closely associated to humans, may play an important role of zoonotic reservoir in transmitting this disease to humans. The fur industry is a major economic component in some parts of China. To understand the prevalence, genotype variety and zoonotic risk of E. bieneusi in farmed foxes and raccoon dogs, two species of fur animals, fecal specimens of 110 blue foxes and 49 raccoon dogs from Heilongjiang and Jilin provinces in China were examined by internal transcribed spacer (ITS)-based PCR. E. bieneusi was detected in 16.4% (18/110) blue foxes and 4.1% (2/49) raccoon dogs. Altogether, four genotypes of E. bieneusi were identified, including two known genotypes D (n = 13) and EbpC (n = 5), and two novel genotypes named as CHN-F1 (n = 1) in a fox and CHN-R1 (n = 1) in a raccoon dog. Phylogenetic analysis revealed that all the four genotypes were the members of zoonotic group 1. Genotypes D and EbpC were found in humans previously. The findings of zoonotic genotypes of E. bieneusi in the foxes and raccoon dogs suggest these animals infected with E. bieneusi may pose a threat to human health.


PLOS ONE | 2014

Genetic Characterization of Human-Derived Hydatid Cysts of Echinococcus granulosus Sensu Lato in Heilongjiang Province and the First Report of G7 Genotype of E. canadensis in Humans in China

Tiemin Zhang; Dong Yang; Zhaolin Zeng; Wei Zhao; Aiqin Liu; Daxun Piao; Tao Jiang; Jianping Cao; Yujuan Shen; Hua Liu; Weizhe Zhang

Cystic echinococcosis (CE) caused by the larval stage of Echinococcus granulosus sensu lato (s.l.) is one of the most important zoonotic parasitic diseases worldwide and 10 genotypes (G1–G10) have been reported. In China, almost all the epidemiological and genotyping studies of E. granulosus s.l. are from the west and northwest pasturing areas. However, in Heilongjiang Province of northeastern China, no molecular information is available on E. granulosus s.l. To understand and to speculate on possible transmission patterns of E. granulosus s.l., we molecularly identified and genotyped 10 hydatid cysts from hepatic CE patients in Heilongjiang Province based on mitochondrial cytochrome c oxidase subunit I (cox1), cytochrome b (cytb) and NADH dehydrogenase subunit 1 (nad1) genes. Two genotypes were identified, G1 genotype (n = 6) and G7 genotype (n = 4). All the six G1 genotype isolates were identical to each other at the cox1 locus; three and two different sequences were obtained at the cytb and nad1 loci, respectively, with two cytb gene sequences not being described previously. G7 genotype isolates were identical to each other at the cox1, cytb and nad1 loci; however, the cytb gene sequence was not described previously. This is the first report of G7 genotype in humans in China. Three new cytb gene sequences from G1 and G7 genotypes might reflect endemic genetic characterizations. Pigs might be the main intermediate hosts of G7 genotype in our investigated area by homology analysis. The results will aid in making more effective control strategies for the prevention of transmission of E. granulosus s.l.


Infection, Genetics and Evolution | 2016

Genotyping of Enterocytozoon bieneusi (Microsporidia) isolated from various birds in China

Wei Zhao; Siyang Yu; Ziyin Yang; Yichi Zhang; Longxian Zhang; Rongjun Wang; Weizhe Zhang; Fengkun Yang; Aiqin Liu

Enterocytozoon bieneusi is a common opportunistic pathogen causing diarrhea in humans and animals. However, epidemiological data on E. bieneusi infections in birds are relatively scare worldwide, especially in China. To understand the prevalence and genetic diversity of E. bieneusi in birds and to assess the zoonotic potential of bird-derived E. bieneusi isolates, 194 fecal specimens from Gruidae, Anatidae and Columbidae in Heilongjiang Province, China, were analyzed by PCR and sequencing of the single internal transcribed spacer region of the rRNA gene. The average prevalence of E. bieneusi was 22.2%, with 12.5% for Gruidae, 15.9% for Anatidae and 44.0% for Columbidae. Altogether seven genotypes of E. bieneusi were identified, including four known genotypes-Peru6 (n=29), BEB6 (n=5), D (n=3) and EbpA (n=1)-and three novel genotypes named CHN-B1 (n=1), CHN-B2 (n=3) and CHN-B3 (n=1). All the known genotypes obtained here were previously detected in humans. All the novel genotypes were clustered into the zoonotic group 1 in phylogenetic analysis. The results indicate that these birds may play a potential role in the transmission of E. bieneusi to humans.

Collaboration


Dive into the Weizhe Zhang's collaboration.

Top Co-Authors

Avatar

Aiqin Liu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Wei Zhao

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Fengkun Yang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yujuan Shen

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Jianping Cao

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Longxian Zhang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Rongjun Wang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hong Ling

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Ziyin Yang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Dong Yang

Harbin Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge