Wen-Hui Zhou
Henan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wen-Hui Zhou.
Talanta | 2009
Huang-Hao Yang; Wen-Hui Zhou; Xiu-Chun Guo; Fa-Rong Chen; Heng-Qiang Zhao; Li-Ming Lin; Xiaoru Wang
In this paper, a highly selective sample cleanup procedure combining molecular imprinting and solid-phase extraction (MI-SPE) was developed for the isolation of melamine in dairy products. The molecularly imprinted polymer (MIP) was prepared using melamine as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer. The melamine imprinted polymer was used as selective sorbent for the solid-phase extraction of melamine from dairy products. An off-line MI-SPE method followed by high-performance liquid chromatography with diode-array detection for the detection of melamine was also established. The mean recoveries of melamine from ultra-heat treatment (UHT) milk and milk powders were 92.9-98.0% and 91.6-102.8%, respectively. Good linearity was obtained from 0.5 microM to 10 microM (r>0.999) with a quantitation limit of 0.5 micromol/L (0.06 ppm) which was sufficient to analyse melamine at the maximum level permitted by U.S. Food and Drug Administration (1 ppm) in dairy products. It was demonstrated that the proposed MI-SPE-HPLC method could be applied to direct determination of melamine in dairy products.
Journal of Materials Chemistry | 2009
Chun-Ling Zhu; Xue-Yuan Song; Wen-Hui Zhou; Huang-Hao Yang; Yong-Hong Wen; Xiaoru Wang
The current work demonstrates an efficient cell-targeting and intracellular controlled-release drug delivery system based on a MSN-PEM-aptamer conjugate. In this system, mesoporous silica nanoparticles (MSN) were employed as drug containers for their high surface area and high loading efficacy. Polyelectrolyte multilayers (PEM) were used to prevent the premature leakage of drugs during the delivery process and controllably released drugs under reducing conditions. Finally, a cancer cell-specific DNA aptamer was selected as the targeting recognition molecule for its high cell recognition. By taking the advantages of high payload, stimuli-response to intracellular environment and high cell recognition ability, this type of delivery vehicle could be used as a promising drug delivery system for specific intracellular delivery and may offer much needed efficacy in cancer therapy.
ACS Applied Materials & Interfaces | 2012
Yan-Fang Du; Jun-Qi Fan; Wen-Hui Zhou; Zheng-Ji Zhou; Jie Jiao; Si-Xin Wu
Cu(2)ZnSnSe(4) (CZTSe) nanoparticles with diameters of 200-300 nm were synthesized by one-step solvothermal method without surfactants or templates. The structure, composition and morphology of CZTSe nanoparticles were characterized by XRD, XPS, Raman spectrum, EDS, FESEM and TEM. The results indicated that the nanoparticles were single phase and nearly stoichiometric composition. CZTSe nanoparticles drop-casted onto FTO substrate were used as counter electrode (CE) in dye-sensitized solar cells (DSSCs) for the first time, which exhibited Pt-like electrocatalytic activity for the reduction of I(3)(-) to I(-) in DSSCs. The J-V results demonstrated that the thickness of the film affected the photocurrent density and fill factor remarkably, which resulted from the difference of electrocatalytic sites and resistance with different thickness films. And a best efficiency of 3.85% was obtained by adjusting the film thickness. The work presents a new approach for developing low-cost, facile fabrication CZTSe nanoparticles, and demonstrates CZTSe can be explored as a low-cost alternative for expensive and scare Pt in DSSCs.
ACS Applied Materials & Interfaces | 2013
Rong-Yue Yao; Zheng-Ji Zhou; Ze-Liang Hou; Xia Wang; Wen-Hui Zhou; Si-Xin Wu
Surfactant-free CuInS2 (CIS) nanocrystals (NCs) were synthesized by replacing organic capping ligands with inorganic ions S(2-). The efficacy of ligand exchange was probed by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis spectroscopy, and Fourier-transform infrared (FTIR). The surfactant-free CIS NCs films were obtained by drop-casting onto the clean FTO glass. The electrical conductivity and electrocatalytic activity of CIS NCs films were sharply increased due to the improved interparticle coupling after ligand exchange. When the surfactant-free CIS films were used as counter electrode (CE) in dye-sensitized solar cells (DSSCs), a conversion efficiency of η = 5.77% was achieved without sintering.
ACS Applied Materials & Interfaces | 2011
Zheng-Ji Zhou; Jun-Qi Fan; Xia Wang; Wen-Hui Zhou; Zuliang Du; Si-Xin Wu
One-dimensional semiconductor nanostructures grown directly onto transparent conducting oxide substrates with a high internal surface area are most desirable for high-efficiency dye-sensitized solar cells (DSSCs). Herein, we present a multicycle hydrothermal synthesis process to produce vertically aligned, single crystal rutile TiO(2) nanowires with different lengths between 1 and 8 μm for application as the working electrode in DSSCs. Optimum performance was obtained with a TiO(2) nanowire length of 2.0 μm, which may be ascribed to a smaller nanowire diameter with a high internal surface area and better optical transmittance with an increase in the incident light intensity on the N719 dye; as well as a firm connection at the FTO/TiO(2) nanowire interface.
ACS Applied Materials & Interfaces | 2011
Zheng-Ji Zhou; Jun-Qi Fan; Xia Wang; Weizhong Sun; Wen-Hui Zhou; Zuliang Du; Si-Xin Wu
One-dimensional semiconductor architectures are receiving attention in preparing photovoltaic solar cells because of its superior charge transport as well as excellent light-harvesting efficiency. In this study, vertically aligned single-crystalline TiO(2) nanorods array was grown directly on transparent conductive glass (FTO), and then CuInS(2) nanocrystals were deposited on nanorods array by spin coating method to form TiO(2)/CuInS(2) heterostructure films. The resulting nanostructure assembly and composition was confirmed by field-emission scanning electron microscope (FESEM) , transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction(XRD). Ultraviolet-visible absorption spectroscopy (UV-vis) data indicates that the absorbance of the nanocomposite film extended into the visible region compared with bare TiO(2) nanorod arrays. The surface photovoltage spectra (SPS) also showed a new and enhanced response region corresponding to the absorption spectrum. These results suggest that the novel CuInS(2) nanocrystals sensitized TiO(2) nanorod array on FTO photoelectrodes has a potential application in photovoltaic devices.
Chemistry: A European Journal | 2013
Shengjie Yuan; Zheng-Ji Zhou; Ze-Liang Hou; Wen-Hui Zhou; Rong-Yue Yao; Yang Zhao; Si-Xin Wu
On the bright side: A solution-based strategy was developed for in situ synthesis and film deposition of Cu2ZnSnSe4 nanocrystal films (samples a-d). The obtained Cu2ZnSnSe4 nanocrystal films can be used as an effective counter-electrode (CE) material to replace Pt, and yield low-cost, high-efficiency dye-sensitized solar cells (DSSCs). The assembled solar cell devices exhibit an efficiency of 7.82 % under 1 sun irradiation (see figure).
Nanoscale Research Letters | 2012
Zheng-Ji Zhou; Shengjie Yuan; Jun-Qi Fan; Ze-Liang Hou; Wen-Hui Zhou; Zuliang Du; Si-Xin Wu
CuInS2 quantum dots (QDs) were deposited onto TiO2 nanorod arrays for different cycles by using successive ionic layer adsorption and reaction (SILAR) method. The effect of SILAR cycles on the light absorption and photoelectrochemical properties of the sensitized photoelectrodes was studied. With optimization of CuInS2 SILAR cycles and introduction of In2S3 buffer layer, quantum dot-sensitized solar cells assembled with 3-μm thick TiO2 nanorod film exhibited a short-circuit current density (Isc) of 4.51 mA cm−2, an open-circuit voltage (Voc) of 0.56 V, a fill factor (FF) of 0.41, and a power conversion efficiency (η) of 1.06%, respectively. This study indicates that SILAR process is a very promising strategy for preparing directly anchored semiconductor QDs on TiO2 nanorod surface in a straightforward but controllable way without any complicated fabrication procedures and introduction of a linker molecule.
ACS Applied Materials & Interfaces | 2014
Hongli Chen; Dong-Xing Kou; Zhixian Chang; Wen-Hui Zhou; Zheng-Ji Zhou; Si-Xin Wu
Cu2ZnSnSxSe4-x (CZTSSe) counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) are commonly developed with porous structures, but their high surface area could also retard electron transport processes owing to the abundant grain boundaries. Herein, we employed a convenient solution method and a rapid heating process to prepare well crystalline CZTSSe CEs in DSSCs. The influence of crystallization of CZTSSe film on DSSCs performances was discussed in depth. The thermogravimetric analysis, phase morphology, conductivity, and electrochemical characteristics of CZTSSe films were performed. It is found that the rapid heating process is beneficial to the formation of well crystalline film with large grains. As the porosity and grain boundaries in the bulk film are dramatically reduced with the enhanced crystallization, the charge transport process is gradually improved. Using cyclic voltammogram and electrochemical impedance spectroscopy measurements, we propose that the accelerating charge transport is of great importance to the photovoltaic performances of DSSCs due to their superior electrocatalytic activities. As the highest cell efficiency was achieved, well crystalline CZTSSe is an efficient CE catalytic material.
Talanta | 2011
Wen-Hui Zhou; Xiu-Chun Guo; Heng-Qiang Zhao; Si-Xin Wu; Huang-Hao Yang; Xiaoru Wang
In this work, a highly selective sample cleanup procedure that combining molecular imprinting technique (MIT) and solid phase extraction (SPE) was developed for the isolation of domoic acid (a fascinating marine toxin) from seafood samples. The molecular imprinting polymer (MIP) for domoic acid was prepared using 1,3,5-pentanetricarboxylic acid as the template molecule instead of domoic acid. 4-Vinyl pyridine was used as the functional monomer and ethylene glycol dimethacrylate was used as the cross-linking monomer. The obtained imprinted polymer showed high affinity to domoic acid and was used as selective sorbent for the SPE of domoic acid from seafood samples. An off-line molecularly imprinted solid phase extraction (MISPE) method followed by high-performance liquid chromatography (HPLC) with diode-array detection for the detection of domoic acid was also established. Good linearity was obtained from 0.5 mg L(-1) to 25 mg L(-1) (R(2)>0.99) with a quantitation limit of 0.1 mg L(-1), which was sufficient to determine domoic acid at the maximum level permitted by several authorities. The mean recoveries of domoic acid from mussel extracts were 93.4-96.7%. It was demonstrated that the proposed MISPE-HPLC method could be applied to direct determination of domoic acid from seafood samples.