Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wen-Juan Zhang is active.

Publication


Featured researches published by Wen-Juan Zhang.


Journal of Chemistry | 2015

Identification of Repellent and Insecticidal Constituents from Artemisia mongolica Essential Oil against Lasioderma serricorne

Chun-Xue You; Shan-Shan Guo; Wen-Juan Zhang; Zhu-Feng Geng; Shu-Shan Du; Chengfang Wang; Zhiwei Deng

The aims of this research were to determine the chemical composition and insecticidal and repellent activities of the Artemisia mongolica essential oil against Lasioderma serricorne and to isolate active constituents from the essential oil. The essential oil of A. mongolica was obtained by hydrodistillation and 36 components were identified with GC-MS. Eucalyptol (39.88%), (S)-cis-verbenol (14.93%), 4-terpineol (7.20%), (−)-camphor (6.02%), and α-terpineol (4.20%) were found to be major components. With a further isolation process, five constituents obtained from the essential oil were identified as eucalyptol, verbenol, 4-terpineol, camphor, and α-terpineol. In the progress of assay, it showed that L. serricorne adults had different sensitivities to the crude essential oil and isolated constituents. 4-Terpineol exhibited strongest contact activity against L. serricorne, showing the LD50 value of 8.62 μg/adult. Moreover, camphor and α-terpineol showed stronger fumigant activity ( and 3.27 mg/L air, resp.) against L. serricorne than crude essential oil and other constituents. In addition, the essential oil, eucalyptol, verbenol, and α-terpineol showed comparable repellency against L. serricorne adults. The results indicate that the essential oil and isolated compounds have potential to provide more efficient and safer natural insecticides or repellents for control of insects in food and Chinese medicinal materials preservation.


Journal of Oleo Science | 2015

Bioactivity of Essential Oil from Artemisia stolonifera (Maxim.) Komar. and Its Main Compounds against Two Stored-Product Insects

Wen-Juan Zhang; Chun-Xue You; Ying Wang; Cheng-Fang Wang; Yan Wu; Zhu-Feng Geng; Yang Su; Shu-Shan Du; Zhiwei Deng

Artemisia stolonifera, a perennial herb, is widely distrbuted in China. The aim of this study was to analyze the essential oil from the aerial parts of Artemisia stolonifera, as well as to evaluate the bioactivity of the oil and its main constituents. The essential oil was analyzed by gas chromatography-flame ionization detector and gas chromatography-mass spectrometry that allowed characterizing 22 compounds. The main components were eucalyptol (32.93%), β-pinene (8.18%), camphor (6.12%) and terpinen-4-ol (6.11%), and obtained from the essential oil after a further isolation. During the contact toxicity tests, the essential oil (LD50 = 8.60 μg/adult) exhibited stronger toxicity against Tribolium castaneum adults than those isolated constituents, however, camphor and terpinen-4-ol showed 1 and 2 times toxicity against Lasioderma serricorne adults than the essential oil (LD50 = 12.68 μg/adult) with LD50 values of 11.30 and 5.42 μg/adult, respectively. In the fumigant toxicity tests, especially on Tribolium castaneum, the essential oil (LC50 = 1.86 mg/L air) showed almost the same level toxicity as positive control, methyl bromide (LC50 = 1.75 mg/L air). Moreover, the essential oil and its four isolated constituents also exhibited strong repellency against two stored-product insects.


Molecules | 2015

Chemical Composition and Insecticidal Activity of Essential Oils from Zanthoxylum dissitum Leaves and Roots against Three Species of Storage Pests

Cheng-Fang Wang; Chun-Xue You; Wen-Juan Zhang; Shan-Shan Guo; Zhu-Feng Geng; Shu-Shan Du; Yong-Yan Wang

This work aimed to investigate chemical composition of essential oils obtained from Zanthoxylum dissitum leaves and roots and their insecticidal activities against several stored product pests, namely the cigarette beetle (Lasioderma serricorne), red flour beetle (Tribolium castaneum) and black carpet beetle (Attagenus piceus). The analysis by GC-MS of the essential oils allowed the identification of 28 and 22 components, respectively. It was found that sesquiterpenoids comprised a fairly high portion of the two essential oils, with percentages of 74.0% and 80.9% in the leaves and roots, respectively. The main constituents identified in the essential oil of Z. dissitum leaves were δ-cadinol (12.8%), caryophyllene (12.7%), β-cubebene (7.9%), 4-terpineol (7.5%) and germacrene D-4-ol (5.7%), while humulene epoxide II (29.4%), caryophyllene oxide (24.0%), diepicedrene-1-oxide (10.7%) and Z,Z,Z-1,5,9,9-tetramethyl-1,4,7-cycloundecatriene (8.7%) were the major components in the essential oil of Z. dissitum roots. The insecticidal activity results indicated that the essential oil of Z. dissitum roots exhibited moderate contact toxicity against three species of storage pests, L. serricorne, T. castaneum and A. piceus, with LD50 values of 13.8, 43.7 and 96.8 µg/adult, respectively.


Journal of Oleo Science | 2017

Bioactivities and Chemical Constituents of Essential Oil Extracted from Artemisia anethoides Against Two Stored Product Insects

Jun-Yu Liang; Wen-ting Wang; Yan-fei Zheng; Di Zhang; Jun-long Wang; Shan-Shan Guo; Wen-Juan Zhang; Shu-Shan Du; Ji Zhang

The chemical constituents of the essential oil extracted from Artemisia anethoides and the bioactivities of essential oil against Tribolium castaneum and Lasioderma serricorne were investigated. The main components of the essential oil were 1,8-cineole (36.54%), 2-isopropyl-5-methyl-3-cyclohexen-1-one (10.40%), terpinen-4-ol (8.58%), 2-isopropyltoluene (6.20) and pinocarveol (5.08%). The essential oil of A. anethoides possessed contact and fumigant toxicities against T. castaneum adults (LD50 = 28.80 μg/adult and LC50 = 13.05 mg/L air, respectively) and against L. serricorne (LD50 = 24.03 μg/adult and LD50 = 8.04 mg/L air, respectively). The crude oil showed repellent activity against T. castaneum and L. serricorne. Especially, the percentage repellency of essential oil was same level with DEET (positive control) against T. castaneum. The results indicated that the essential oil of A. anethoides had the potential to be developed as insecticide and repellent for control of T. castaneum and L. serricorne.


Molecules | 2016

Contact and Repellent Activities of the Essential Oil from Juniperus formosana against Two Stored Product Insects

Shan-Shan Guo; Wen-Juan Zhang; Junyu Liang; Chun-Xue You; Zhu-Feng Geng; Cheng-Fang Wang; Shu-Shan Du

The chemical composition of the essential oil from Juniperus formosana leaves and its contact and repellent activities against Tribolium castaneum and Liposcelis bostrychophila adults were investigated. The essential oil of J. formosana leaves was obtained by hydrodistillation and analyzed by GC-MS. A total of 28 components were identified and the main compounds in the essential oil were α-pinene (21.66%), 4-terpineol (11.25%), limonene (11.00%) and β-phellandrene (6.63%). The constituents α-pinene, 4-terpineol and d-limonene were isolated from the essential oil. It was found that the essential oil exhibited contact activity against T. castaneum and L. bostrychophila adults (LD50 = 29.14 μg/adult and 81.50 µg/cm2, respectively). The compound 4-terpineol exhibited the strongest contact activity (LD50 = 7.65 μg/adult). In addition, data showed that at 78.63 nL/cm2, the essential oil and the three isolated compounds strongly repelled T. castaneum adults. The compounds α-pinene and d-limonene reached the same level (Class V) of repellency as DEET (p = 0.396 and 0.664) against L. bostrychophila at 63.17 nL/cm2 after 2 h treatment. The results indicate that the essential oil and the isolated compounds have potential to be developed into natural insecticides and repellents to control insects in stored products.


Molecules | 2015

Contact Toxicity and Repellency of the Essential Oil of Liriope muscari (DECN.) Bailey against Three Insect Tobacco Storage Pests

Yan Wu; Wen-Juan Zhang; Pingjuan Wang; Dongye Huang; Jian-Yu Wei; Zhao-Fu Tian; Jia-Feng Bai; Shu-Shan Du

In order to find and develop new botanical pesticides against tobacco storage pests, bioactivity screening was performed. The essential oil obtained from the aerial parts of Liriope muscari was investigated by GC/MS and GC/FID. A total of 14 components representing 96.12% of the oil were identified and the main compounds in the oil were found to be methyl eugenol (42.15%) and safrole (17.15%), followed by myristicin (14.18%) and 3,5-dimethoxytoluene (10.60%). After screening, the essential oil exhibit potential insecticidal activity. In the progress of assay, it showed that the essential oil exhibited potent contact toxicity against Tribolium castaneum, Lasioderma serricorne and Liposcelis bostrychophila adults, with LD50 values of 13.36, 11.28 µg/adult and 21.37 µg/cm2, respectively. The essential oil also exhibited strong repellency against the three stored product insects. At the same concentrations, the essential oil was more repellent to T. castaneum than to L. serricorne adults. The results indicate that the essential oil of Liriope muscari has potential to be developed into a natural insecticide or repellent for controlling insects in stored tobacco and traditional Chinese medicinal materials.


International Journal of Molecular Sciences | 2016

The Chemical Composition of Essential Oils from Cinnamomum camphora and Their Insecticidal Activity against the Stored Product Pests

Shan-Shan Guo; Zhu-Feng Geng; Wen-Juan Zhang; Junyu Liang; Cheng-Fang Wang; Zhiwei Deng; Shu-Shan Du

To investigate the chemical composition and insecticidal activity of the essential oils of certain Chinese medicinal herbs and spices, the essential oils were extracted from the stem barks, leaves, and fruits of Cinnamomum camphora (L.) Presl, which were found to possess strong fumigant toxicity against Tribolium castaneum and Lasioderma serricorne adults. The essential oils of the plants were extracted by the method of steam distillation using a Clavenger apparatus. Their composition was determined by gas chromatography/mass spectrometric (GC-MS) analyses (HP-5MS column), and their insecticidal activity was measured by seal-spaced fumigation. D-camphor (51.3%), 1,8-cineole (4.3%), and α-terpineol (3.8%), while D-camphor (28.1%), linalool (22.9%), and 1,8-cineole (5.3%) were the main constituents of its fruits. The essential oils of the C. camphora all showed fumigant and contact toxicity. Other compounds exhibited various levels of bioactivities. The results indicate that the essential oils of C. camphora and its individual compounds can be considered a natural resource for the two stored-product insect management.


Molecules | 2015

Chemical Composition and Bioactivities of the Essential Oil from Etlingera yunnanensis against Two Stored Product Insects

Shan-Shan Guo; Chun-Xue You; Junyu Liang; Wen-Juan Zhang; Zhu-Feng Geng; Cheng-Fang Wang; Shu-Shan Du; Ning Lei

The chemical composition of the essential oil of Etlingera yunnanensis rhizomes and its contact and repellent activities against Tribolium castaneum (Herbst) and Liposcelis bostrychophila (Badonnel) were investigated. The essential oil obtained from E. yunnanensis rhizomes with hydrodistillation was performed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. The main components of the essential oil were identified to be estragole (65.2%), β-caryophyllene (6.4%), 1,8-cineole (6.4%), limonene (5.2%), and α-pinene (2.4%). It was found that the essential oil of E. yunnanensis rhizomes possessed contact toxicity against T. castaneum and L. bostrychophila (LD50 = 23.33 μg/adult and LD50 = 47.38 μg/cm2, respectively). Estragole, 1,8-cineole, and limonene exhibited stronger contact toxicity (LD50 values of 20.41, 18.86, and 13.40 μg/adult, respectively) than β-caryophyllene (LD50 = 41.72 μg/adult) against T. castaneum adults. Estragole possessed stronger contact toxicity (LD50 = 30.22 µg/cm2) than β-caryophyllene, 1,8-cineole, and limonene (LD50 values of 74.11, 321.20, and 239.62 μg/adult, respectively) against L. bostrychophila adults. Repellency of the crude oil was also evaluated. The essential oil and constituents possessed strong repellent activity against T. castaneum adults. The four individual constituents showed weaker repellent activity than the essential oil against L. bostrychophila adults. The results indicated that the essential oil of E. yunnanensis rhizomes and the individual constituents had the potential to be developed as a natural insecticide and repellent for the control of T. castaneum and L. bostrychophila.


Molecules | 2015

Chemical Compositions and Insecticidal Activities of Alpinia kwangsiensis Essential Oil against Lasioderma serricorne.

Yan Wu; Wen-Juan Zhang; Dongye Huang; Ying Wang; Jian-Yu Wei; Zhihua Li; Jian-Sheng Sun; Jia-Feng Bai; Zhao-Fu Tian; Pingjuan Wang; Shu-Shan Du

The essential oil obtained by hydrodistillation from Alpinia kwangsiensis rhizomes was investigated by GC-MS. A total of 31 components representing 92.45% of the oil were identified and the main compounds in the oil were found to be camphor (17.59%), eucalyptol (15.16%), β-pinene (11.15%) and α-pinene (10.50%). These four compounds were subsequently isolated and the essential oil and four isolated compounds exhibited potent insecticidal activity against Lasioderma serricorne adults. During the assay, it was shown that the essential oil exhibited both potential contact (LD50 = of 24.59 μg/adult) and fumigant (LC50 = of 9.91 mg/L air) toxicity against Lasioderma serricorne. The study revealed that the insecticidal activity of the essential oil can be attributed to the synergistic effects of its diverse major components, which indicates that oil of Alpinia kwangsiensis and its isolated compounds have potential to be developed into natural insecticides to control insects in stored grains and traditional Chinese medicinal materials.


Chemistry & Biodiversity | 2015

Contact toxicity and repellency of the essential oil from Mentha haplocalyx Briq. against Lasioderma serricorne.

Wen-Juan Zhang; Chun-Xue You; Cheng-Fang Wang; Zhu-Feng Geng; Yang Su; Ying Wang; Shu-Shan Du; Zhiwei Deng

The chemical composition of the essential oil obtained by hydrodistillation from the aerial parts of Mentha haplocalyx was investigated by GC‐FID and GC/MS analyses. In sum, 23 components, representing 92.88% of the total oil composition, were identified, and the main compounds were found to be menthol (59.71%), menthyl acetate (7.83%), limonene (6.98%), and menthone (4.44%). By bioassay‐guided fractionation (contact toxicity), three compounds were obtained from the essential oil and identified as menthol, menthyl acetate, and limonene. The essential oil and the three isolated compounds exhibited potent contact toxicity against Lasioderma serricorne adults, with LD50 values of 16.5, 7.91, 5.96, and 13.7 μg/adult, respectively. Moreover, the oil and its isolated compounds also exhibited strong repellency against L. serricorne adults. At the lower concentrations tested and at 2 h after exposure, menthol showed even significantly stronger repellency than the positive control DEET. The study revealed that the bioactivity properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components, which indicates that the M. haplocalyx oil and its isolated compounds have potential for the development as natural insecticides and/or repellents to control insects in stored grains and traditional Chinese medicinal materials.

Collaboration


Dive into the Wen-Juan Zhang's collaboration.

Top Co-Authors

Avatar

Shu-Shan Du

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Zhu-Feng Geng

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Chun-Xue You

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Shan-Shan Guo

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Zhiwei Deng

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Cheng-Fang Wang

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Jun-Yu Liang

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Ying Wang

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Junyu Liang

Northwest Normal University

View shared research outputs
Top Co-Authors

Avatar

Yan Wu

Beijing Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge