Wen-Kai Xia
Southwest University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wen-Kai Xia.
International Journal of Molecular Sciences | 2013
Chong-Yu Liao; Kun Zhang; Jin-Zhi Niu; Tian-Bo Ding; Rui Zhong; Wen-Kai Xia; Wei Dou; Jin-Jun Wang
The citrus red mite, Panonychus citri (McGregor), is a global citrus pest, and has developed severe resistance to several types of acaricides. However, the molecular mechanisms of resistance in this mite remain unknown. In this study, seven full-length cDNAs encoding glutathione S-transferases (GSTs) genes were identified and characterized in P. citri. The effects of pyridaben and fenpropathrin exposure on the expression of these genes were also investigated. Phylogenetic analysis revealed that the seven GSTs genes in P. citri cloned in this study belong to three different cytosolic classes, including four in mu, two in delta and one in zeta. Among these seven GSTs genes, the relative expression level of PcGSTm1 was significantly higher in adult than in the other life stages (egg, larvae and nymph). Compared with the control, the mRNA levels of the seven GST genes did not change significantly following exposure to pyridaben at LC10. However, RT-qPCR results showed that, when exposed to LC10 of fenpropathrin, six GSTs gene (PcGSTm1, PcGSTm3, PcGSTm4, PcGSTd1, PcGSTd2 and PcGSTz1) transcripts increased in a time-dependent manner. This is the first insight into the molecular characteristics of GSTs gene cDNAs in P. citri. The elevated GSTs gene transcripts following exposure to fenpropathrin might be one of the mechanisms involved in detoxification of this acaricide.
International Journal of Molecular Sciences | 2014
Wen-Kai Xia; Tian-Bo Ding; Jin-Zhi Niu; Chong-Yu Liao; Rui Zhong; Wen-Jia Yang; Bin Liu; Wei Dou; Jin-Jun Wang
Chitin synthase synthesizes chitin, which is critical for the arthropod exoskeleton. In this study, we cloned the cDNA sequences of a chitin synthase 1 gene, PcCHS1, in the citrus red mite, Panonychus citri (McGregor), which is one of the most economically important pests of citrus worldwide. The full-length cDNA of PcCHS1 contains an open reading frame of 4605 bp of nucleotides, which encodes a protein of 1535 amino acid residues with a predicted molecular mass of 175.0 kDa. A phylogenetic analysis showed that PcCHS1 was most closely related to CHS1 from Tetranychus urticae. During P. citri development, PcCHS1 was constantly expressed in all stages but highly expressed in the egg stage (114.8-fold higher than in the adult). When larvae were exposed to diflubenzuron (DFB) for 6 h, the mite had a significantly high mortality rate, and the mRNA expression levels of PcCHS1 were significantly enhanced. These results indicate a promising use of DFB to control P. citri, by possibly acting as an inhibitor in chitin synthesis as indicated by the up-regulation of PcCHS1 after exposure to DFB.
Pesticide Biochemistry and Physiology | 2016
Chong-Yu Liao; Wen-Kai Xia; Ying-Cai Feng; Gang Li; Hai Liu; Wei Dou; Jin-Jun Wang
The citrus red mite, Panonychus citri (McGregor), a major citrus pest distributed worldwide, has been found to be resistant to various insecticides and acaricides used in China. However, the molecular mechanisms associated with the abamectin resistance in this species have not yet been reported. In this study, results showed over-expression of a novel glutathione S-transferases (GSTs) gene (PcGSTm5) in abamectin-resistant P. citri. Quantitative real-time PCR analysis showed that the transcripts of PcGSTm5 were also significantly up-regulated after exposure to abamectin and the maximum mRNA expression level at nymphal stage. The recombinant protein of PcGSTm5-pET-28a produced by Escherichia coli showed a pronounced activity toward the conjugates of 1-chloro-2,4 dinitrobenzene (CDNB) and glutathione (GSH). The kinetics of CDNB and GSH and its optimal pH and thermal stability were also determined. Reverse genetic study through a new method of leaf-mediated dsRNA feeding further support a link between the expression of PcGSTm5 and abamectin resistance. However, no direct evidence was found in metabolism or inhibition assays to confirm the hypothesis that PcGSTm5 can metabolize abamectin. Finally, it is here speculated that PcGSTm5 may play a role in abamectin detoxification through other pathway such as the antioxidant protection.
Insect Molecular Biology | 2016
Feng Shang; Y. Xiong; Wen-Kai Xia; Dan-Dan Wei; Dong Wei; Jun-Zhong Wang
Chitin synthase (CHS) is a crucial enzyme involved in the final step of the insect chitin biosynthetic pathway. In this study, we cloned the full‐length cDNA sequence of a chitin synthase gene (TCiCHS) from the brown citrus aphid, Toxoptera citricida, an important citrus pest and the main vector of citrus tristeza virus worldwide. TCiCHS was expressed during the entire lifecycle and in all insect tissues examined. Expression was highest in first–second‐instar nymphs, nymph–adult transitions and in the abdomen (6.7‐fold higher than head). Embryos had a higher expression level than the integument. Fourth‐instar nymphs were exposed to 5 and 500 mg/l concentrations of the chitin synthesis inhibitor diflubenzuron (DFB) for 48 h and had the highest mortality at the 500 mg/l concentration. The mRNA expression levels of TCiCHS were significantly enhanced upon the exposure of nymphs to both low and high DFB concentrations. Silencing of TCiCHS occurred through plant‐mediated double‐stranded RNA (dsRNA) feeding. Most dsRNA‐fed nymphs were unable to moult to the next stage, and the expression of TCiCHS decreased 48% compared with controls. These results demonstrate that TCiCHS plays an important role in nymph to adult development, is possibly help identify molecular targets for To. citricida control.
Pest Management Science | 2015
Tian-Bo Ding; Rui Zhong; Xuan-Zhao Jiang; Chong-Yu Liao; Wen-Kai Xia; Bin Liu; Wei Dou; Jin-Jun Wang
BACKGROUND The citrus red mite, Panonychus citri (McGregor), is regarded as one of the most serious citrus pests in many countries and has developed high resistance to pyrethroids as a result of the intensive use of these acaricides. RESULTS The para sodium channel gene of P. citri (named PcNav ), containing an entire coding region of 6729 bp, was cloned in this study. Three alternative splicing sites and 12 potential RNA editing sites were identified in PcNav . Thus, exons alt 1 and alt 3-v3 were found to be unique to PcNav . Comparison of field fenpropathrin-resistant (WZ) and susceptible (LS) strains identified the point mutation F1538I in IIIS6 of the sodium channel, which is known to confer strong resistance to pyrethroids in mites. Moreover, it was also found that the PcNav mRNA was present during all life stages, and the transcript seems to be more abundant in larvae than in other developmental stages. CONCLUSION These results suggest that the F1538I mutation plays an important role in fenpropathrin resistance in citrus red mites. This is the first study of the sodium channel in P. citri and provides abundant information for further research on the mechanism of pyrethroid resistance.
Experimental and Applied Acarology | 2015
Ying-Cai Feng; Chong-Yu Liao; Wen-Kai Xia; Xuan-Zhao Jiang; Feng Shang; Guo-Rui Yuan; Jin-Jun Wang
Abstract Superoxide dismutase (SOD) is a family of enzymes with multiple isoforms that possess antioxidative abilities in response to environmental stresses. Panonychus citri is one of the most important pest mites and has a global distribution. In this study, three distinct isoforms of SOD were cloned from P. citri and identified as cytoplasmic Cu-ZnSOD (PcSOD1), extracellular Cu-ZnSOD (PcSOD2), and mitochondrial MnSOD (PcSOD3). mRNA expression level analysis showed that all three isoforms were up-regulated significantly after exposure to the acaricide abamectin and to UV-B ultraviolet irradiation. In particular, PcSOD3 was up-regulated under almost all environmental stresses tested. The fold change of PcSOD3 expression was significantly higher than those of the two Cu-ZnSOD isoforms. Taken together, the results indicate that abamectin and UV-B can induce transcripts of all three SOD isoforms in P. citri. Furthermore, PcSOD3 seems to play a more important role in P. citri tolerance to oxidative stress.
Insect Molecular Biology | 2014
Bin Liu; Wei Dou; Tian-Bo Ding; Rui Zhong; Chong-Yu Liao; Wen-Kai Xia; Jun-Zhong Wang
The citrus red mite (Panonychus citri) can feed on more than 112 plant species around the world. Endogenous small RNAs (sRNAs) have proved to be important components of gene regulation in many eukaryotes. Recently, many sRNAs have been shown to be involved in various biological processes, such as development in many animals, including insects; however, to date, no sRNAs have been reported in the citrus red mite. Using Illumina sequencing, several categories of sRNAs were identified, including 594 known microRNAs (miRNAs) grouped into 206 families and 31 novel miRNAs in the four developmental stages of citrus red mite. In addition, according to bioinformatics analysis and S‐Poly(T) miRNA assays, the expression level of many miRNAs varied among the developmental stages. Furthermore, the prediction of miRNAs target genes and their functional annotation indicated that miRNAs are involved in the regulation of multiple pathways in the citrus red mite. As the first report of the sRNA world in citrus red mite, the present study furthers our understanding of the roles played by sRNAs in the development of citrus red mite and the data may help to develop methods of controlling the pests in the field.
International Journal of Molecular Sciences | 2015
Rui Zhong; Tian-Bo Ding; Jin-Zhi Niu; Wen-Kai Xia; Chong-Yu Liao; Wei Dou; Jin-Jun Wang
The production and uptake of yolk protein play an important role in the reproduction of all oviparous organisms. Vitellogenin (Vg) is the precursor of vitellin (Vn), which is the major egg storage protein, and vitellogenin receptor (VgR) is a necessary protein for the uptake of Vg into developing oocytes. In this paper, we characterize the full-length Vg and VgR, PcVg1 and PcVgR, respectively, of the citrus red mite Panonychus citri (McGregor). The PcVg1 cDNA is 5748 nucleotides (nt) with a 5553-nt open reading frame (ORF) coding for 1851 amino acids (aa), and the PcVgR is 6090 nt, containing an intact ORF of 5673 nt coding an expected protein of 1891 aa. The PcVg1 aa sequence shows a typical GLCG domain and several K/RXXR cleavage sites, and PcVgR comprises two ligand-binding domains, two epidermal growth factor (EGF)-like regions containing YWTD motifs, a transmembrane domain, and a cytoplasmic domain. An analysis of the aa sequences and phylogenetics implied that both genes were genetically distinct from those of ticks and insects. The transcriptional profiles determined by real-time quantitative PCR in different developmental stages showed that both genes present the same expressional tendencies in eggs, larvae, nymphs, and adults. This suggested that the biosynthesis and uptake of PcVg occurs coordinately. The strong reproductive capacity of P. citri has been hypothesized as an important factor in its resistance; consequently, understanding the molecular mechanisms regulating Vg and VgR are fundamental for mite control.
Journal of Proteomics | 2017
Xiao-Min Shen; Rui Zhong; Wen-Kai Xia; Dong Wei; Tian-Bo Ding; Chong-Yu Liao; Jin-Zhi Niu; Wei Dou; Jin-Jun Wang
Abamectin is a microbial-derived pesticide widely used for control of agricultural pests. However, sustained use of abamectin has led to the development of resistance in some target species. Previous studies on arthropod resistance to abamectin have mainly used traditional biochemical and molecular approaches. To understand the responses of citrus red mite, Panonychus citri, exposed to abamectin, comparative proteomic analysis was conducted using two-dimensional electrophoresis (2-DE). A total of 26 distinct protein spots were present in response to abamectin exposure. Tandem mass spectrometry (MS/MS) identified 16 proteins that were mainly involved in energy metabolism and detoxification. Some remaining proteins were not identifiable, suggesting that they may be novel. The expression levels of transcripts associated with proteins were analyzed by quantitative reverse transcription PCR (qRT-PCR). Furthermore, to validate the proteomic data obtained in the present study, Western-blot experiment was performed and the expression of sHsp and PcE1 proteins were confirmed, respectively. BIOLOGICAL SIGNIFICANCE The citrus red mite has developed resistance to many acaricides, including abamectin. In the current study, we used the proteomic approaches involving 2-DE, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), and MS/MS to document changes in adult P. citri during 24h of abamectin exposure. Abamectin stress induced a total of 16 differentially regulated proteins. The proteomic results were validated in mRNA expression patterns using qRT-PCR. This is the first analysis of differentially expressed proteins in P. citri exposed to abamectin. The results help clarify the physiological mechanisms of P. citri responses to abamectin exposure.
Experimental and Applied Acarology | 2017
Wei Dou; Wen-Kai Xia; Jin-Zhi Niu; Jin-Jun Wang
The citrus red mite, Panonychus citri, is one of the most economically and globally destructive mite pests of citrus. Acaricide resistance has been a growing problem in controlling this pest. As the main inhibitory neurotransmitter in organisms, γ-aminobutyric acid (GABA) is synthesized from the amino acid glutamate by the action of glutamate decarboxylases (GADs). In the present study, one novel GAD gene, PcGAD, was identified and characterized from P. citri. The opening reading frame of PcGAD contained 1548 nucleotides that encode 515 amino acids. The subsequent spatiotemporal expression pattern by RT-qPCR revealed that the expression levels of PcGAD were significantly higher in larvae than in adults. Challenging with various concentrations of abamectin resulted in the upregulation of PcGAD transcript levels. Furthermore, biochemical characterization indicated that changes in GAD activity coincided with its mRNA levels. High-performance liquid chromatography confirmed that the GABA contents of P. citri increased upon abamectin treatment. The application of abamectin induces PcGAD expression and activates GAD activity, thereby resulting in an increase in GABA content in P. citri, which contributes to the adaptability of the mite to abamectin challenge.