Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wen Peng is active.

Publication


Featured researches published by Wen Peng.


The Plant Cell | 2002

The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis.

Linghui Xu; Fuquan Liu; Esther Lechner; Pascal Genschik; William L. Crosby; Hong Ma; Wen Peng; Dafang Huang; Daoxin Xie

Xie and colleagues previously isolated the Arabidopsis COI1 gene that is required for response to jasmonates (JAs), which regulate root growth, pollen fertility, wound healing, and defense against insects and pathogens. In this study, we demonstrate that COI1 associates physically with AtCUL1, AtRbx1, and either of the Arabidopsis Skp1-like proteins ASK1 or ASK2 to assemble ubiquitin-ligase complexes, which we have designated SCFCOI1. COI1E22A, a single amino acid substitution in the F-box motif of COI1, abolishes the formation of the SCFCOI1 complexes and results in loss of the JA response. AtRbx1 double-stranded RNA-mediated genetic interference reduces AtRbx1 expression and affects JA-inducible gene expression. Furthermore, we show that the AtCUL1 component of SCFCOI1 complexes is modified in planta, where mutations in AXR1 decrease the abundance of the modified AtCUL1 of SCFCOI1 and lead to a reduction in JA response. Finally, we demonstrate that the axr1 and coi1 mutations display a synergistic genetic interaction in the double mutant. These results suggest that the COI1-mediated JA response is dependent on the SCFCOI1 complexes in Arabidopsis and that the AXR1-dependent modification of the AtCUL1 subunit of SCFCOI1 complexes is important for JA signaling.


The Plant Cell | 2009

The Arabidopsis CORONATINE INSENSITIVE1 Protein Is a Jasmonate Receptor

Jianbin Yan; Chi Zhang; Min Gu; Zhiyan Bai; Weiguo Zhang; Tiancong Qi; Zhiwei Cheng; Wen Peng; Haibin Luo; Fajun Nan; Zhao Wang; Daoxin Xie

Jasmonates play a number of diverse roles in plant defense and development. CORONATINE INSENSITIVE1 (COI1), an F-box protein essential for all the jasmonate responses, interacts with multiple proteins to form the SCFCOI1 E3 ubiquitin ligase complex and recruits jasmonate ZIM-domain (JAZ) proteins for degradation by the 26S proteasome. To determine which protein directly binds to jasmonoyl-isoleucine (JA-Ile)/coronatine (COR) and serves as a receptor for jasmonate, we built a high-quality structural model of COI1 and performed molecular modeling of COI1–jasmonate interactions. Our results imply that COI1 has the structural traits for binding JA-Ile or COR. The direct binding of these molecules with COI1 was further examined using a combination of molecular and biochemical approaches. First, we used the immobilized jasmonate approach to show that the COI1 protein in crude leaf extracts can bind to the jasmonate moiety of JA-Ile. Second, we employed surface plasmon resonance technology with purified COI1 and JAZ1 protein to reveal the interaction among COI1, JA-Ile, and JAZ1. Finally, we used the photoaffinity labeling technology to show the direct binding of COR with purified insect-expressed COI1. Taken together, these results demonstrate that COI1 directly binds to JA-Ile and COR and serves as a receptor for jasmonate.


The Plant Cell | 2011

The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana

Tiancong Qi; Susheng Song; Qingcuo Ren; Dewei Wu; Huang Huang; Yan Chen; Meng Fan; Wen Peng; Chunmei Ren; Daoxin Xie

This work examines the molecular mechanism of jasmonate regulation of anthocyanin biosynthesis and trichome initiation. It identifies three bHLH transcription factors and two MYB transcription factors as new targets of JAZ proteins, showing that JAZ proteins attenuate the transcriptional function of WD-repeat/bHLH/MYB complexes to regulate anthocyanin accumulation and trichome. Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)–based SCFCOI1 complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation.


The Plant Cell | 2011

The Jasmonate-ZIM Domain Proteins Interact with the R2R3-MYB Transcription Factors MYB21 and MYB24 to Affect Jasmonate-Regulated Stamen Development in Arabidopsis

Susheng Song; Tiancong Qi; Huang Huang; Qingcuo Ren; Dewei Wu; Changqing Chang; Wen Peng; Yule Liu; Jinrong Peng; Daoxin Xie

Jasmonate is essential for diverse biological processes, including male fertility and plant defense in Arabidopsis. This work shows that the R2R3-MYB transcription factors MYB21 and MYB24 function as direct targets of JAZ proteins to mediate jasmonate-regulated stamen development. The Arabidopsis thaliana F-box protein CORONATINE INSENSITIVE1 (COI1) perceives jasmonate (JA) signals and subsequently targets the Jasmonate-ZIM domain proteins (JAZs) for degradation by the SCFCOI1-26S proteasome pathway to mediate various jasmonate-regulated processes, including fertility, root growth, anthocyanin accumulation, senescence, and defense. In this study, we screened JAZ-interacting proteins from an Arabidopsis cDNA library in the yeast two-hybrid system. MYB21 and MYB24, two R2R3-MYB transcription factors, were found to interact with JAZ1, JAZ8, and JAZ11 in yeast and in planta. Genetic and physiological experiments showed that the myb21 myb24 double mutant exhibited defects specifically in pollen maturation, anther dehiscence, and filament elongation leading to male sterility. Transgenic expression of MYB21 in the coi1-1 mutant was able to rescue male fertility partially but unable to recover JA-regulated root growth inhibition, anthocyanin accumulation, and plant defense. These results demonstrate that the R2R3-MYB transcription factors MYB21 and MYB24 function as direct targets of JAZs to regulate male fertility specifically. We speculate that JAZs interact with MYB21 and MYB24 to attenuate their transcriptional function; upon perception of JA signal, COI1 recruits JAZs to the SCFCOI1 complex for ubiquitination and degradation through the 26S proteasome; MYB21 and MYB24 are then released to activate expression of various genes essential for JA-regulated anther development and filament elongation.


Molecular Plant | 2011

The bHLH Transcription Factor MYC3 Interacts with the Jasmonate ZIM-Domain Proteins to Mediate Jasmonate Response in Arabidopsis

Zhiwei Cheng; Li Sun; Tiancong Qi; Bosen Zhang; Wen Peng; Yule Liu; Daoxin Xie

The Arabidopsis Jasmonate ZIM-domain proteins (JAZs) act as substrates of SCF(COI1) complex to repress their downstream targets, which are essential for JA-regulated plant development and defense. The bHLH transcription factor MYC2 was found to interact with JAZs and mediate JA responses including JA-inhibitory root growth. Here, we identified another bHLH transcription factor MYC3 which directly interacted with JAZs by virtue of its N-terminal region to regulate JA responses. The transgenic plants with overexpression of MYC3 exhibited hypersensitivity in JA-inhibitory root elongation and seedling development. The JAZ-interacting pattern and the JA-induced expression pattern of MYC3 were distinguishable from those of MYC2. We speculate that MYC3 and MYC2 may have redundant but also distinguishable functions in regulation of JA responses.


The Plant Cell | 2004

COS1: An Arabidopsis coronatine insensitive1 Suppressor Essential for Regulation of Jasmonate-Mediated Plant Defense and Senescence

Shi Xiao; Liangying Dai; Fuquan Liu; Zhilong Wang; Wen Peng; Daoxin Xie

The Arabidopsis thaliana CORONATINE INSENSITIVE1 (COI1) gene encodes an F-box protein to assemble SCFCOI1 complexes essential for response to jasmonates (JAs), which are a family of plant signaling molecules required for many essential functions, including plant defense and reproduction. To better understand the molecular basis of JA action, we screened for suppressors of coi1 and isolated a coi1 suppressor1 (cos1) mutant. The cos1 mutation restores the coi1-related phenotypes, including defects in JA sensitivity, senescence, and plant defense responses. The COS1 gene was cloned through a map-based approach and found to encode lumazine synthase, a key component in the riboflavin pathway that is essential for diverse yet critical cellular processes. We demonstrated a novel function for the riboflavin pathway that acts downstream of COI1 in the JA signaling pathway and is required for suppression of the COI1-mediated root growth, senescence, and plant defense.


The Plant Cell | 2004

The ASK1 and ASK2 Genes Are Essential for Arabidopsis Early Development

Fuquan Liu; Weimin Ni; Megan E. Griffith; Zhiyuan Huang; Changqing Chang; Wen Peng; Hong Ma; Daoxin Xie

The requirement of CUL1 for Arabidopsis embryogenesis suggests that Skp1–CUL1–F-box protein (SCF) complexes play important roles during embryo development. Among the 21 Arabidopsis Skp1-like genes (ASKs), it is unknown which ASK gene(s) is essential for embryo development. In this study, we demonstrate a vital role for ASK1 and ASK2 in Arabidopsis embryogenesis and postembryonic development through analysis of the ask1 ask2 double mutant. Our detailed analysis indicates that the double mutations in both ASK1 and ASK2 affect cell division and cell expansion/elongation and cause a developmental delay during embryogenesis and lethality in seedling growth. The expression patterns of ASK1 and ASK2 were examined further and found to be consistent with their roles in embryogenesis and seedling development. We propose that mutations in ASK1 and ASK2 abolish all of the ASK1- and ASK2-based SCF and non-SCF complexes, resulting in alteration of gene expression and leading to defects in growth and development.


Plant Physiology | 2009

A Leaky Mutation in DWARF4 Reveals an Antagonistic Role of Brassinosteroid in the Inhibition of Root Growth by Jasmonate in Arabidopsis

Chunmei Ren; Chengyun Han; Wen Peng; Ying Huang; Zhihong Peng; Xingyao Xiong; Qi Zhu; Bida Gao; Daoxin Xie

The F-box protein CORONATINE INSENSITIVE1 (COI1) plays a central role in jasmonate (JA) signaling and is required for all JA responses in Arabidopsis (Arabidopsis thaliana). To dissect JA signal transduction, we isolated the partially suppressing coi1 (psc1) mutant, which partially suppressed coi1 insensitivity to JA inhibition of root growth. The psc1 mutant partially restored JA sensitivity in coi1-2 background and displayed JA hypersensitivity in wild-type COI1 background. Genetic mapping, sequence analysis, and complementation tests revealed that psc1 is a leaky mutation of DWARF4 (DWF4) that encodes a key enzyme in brassinosteroid (BR) biosynthesis. Physiological analysis showed that an application of exogenous BR eliminated the partial restoration of JA sensitivity by psc1 in coi1-2 background and the JA hypersensitivity of psc1 in wild-type COI1 background. Exogenous BR also attenuated JA inhibition of root growth in the wild type. In addition, the expression of DWF4 was inhibited by JA, and this inhibition was dependent on COI1. These results indicate that (1) BR is involved in JA signaling and negatively regulates JA inhibition of root growth, and (2) the DWF4 is down-regulated by JA and is located downstream of COI1 in the JA-signaling pathway.


FEBS Letters | 2001

An Arabidopsis mutant cex1 exhibits constant accumulation of jasmonate-regulated AtVSP, Thi2.1 and PDF1.2.

Linghui Xu; Fuquan Liu; Zhilong Wang; Wen Peng; Rongfeng Huang; Dafang Huang; Daoxin Xie

Jasmonates (JA) act as a regulator in plant growth as well as a signal in plant defense. The Arabidopsis vegetative storage protein (AtVSP) and plant defense‐related proteins thionin (Thi2.1) and defensin (PDF1.2) have previously been shown to accumulate in response to JA induction. In this report, we isolated and characterized a novel recessive mutant, cex1, conferring constitutive JA‐responsive phenotypes including JA‐inhibitory growth and constitutive expression of JA‐regulated AtVSP, Thi2.1 and PDF1.2. The plant morphology and the gene expression pattern of the cex1 mutant could be phenocopied by treatment of wild‐type plants with exogenous JA, indicating that CEX1 might be a negative regulator of the JA response pathway.


Molecular Plant-microbe Interactions | 2005

GmCOI1, a Soybean F-Box Protein Gene, Shows Ability to Mediate Jasmonate-Regulated Plant Defense and Fertility in Arabidopsis

Zhilong Wang; Liangying Dai; Zide Jiang; Wen Peng; Lianhui Zhang; Guo-Liang Wang; Daoxin Xie

The F-box protein gene COI1 from Arabidopsis plays a fundamental role in response to jasmonates, which regulate plant root growth, pollen fertility, wounding and healing, and defense against pathogens and insects. Null mutations in COI1 were previously found to abolish all the jasmonate responses, and the Arabidopsis coil-1 mutant is male sterile and susceptible to pathogen infection. In this study, we isolated an F-box protein gene from soybean, which shares significant homology with the Arabidopsis COI1 and similarly contains an F-box motif and leucine rich repeats (LRR), here designated GmCOI1 (Glycine max L. (Merr.) COI1). To test whether the sequence homology and structural similarity are indicative of functional conservation, we expressed GmCOI1 in the Arabidopsis coil-1 mutant. The transgenic coil-1 plants with expression of the GmCOI1 gene were found to exhibit normal jasmonate responses, including jasmonate-regulated plant defense and fertility. In addition, the chimerical proteins with swapped domain of the F-box motif or LRR between GmCOI1 and COI1 were shown to functionally complement the coil-1 mutation. Furthermore, GmCOI1 was found to assemble into the Skpl-Cullin-F-box (SCF) complexes, similar to the formation of the Arabidopsis SCF(COO1). These data demonstrate the soybean F-box protein gene GmCOI1 is able to mediate jasmonate-regulated plant defense and fertility in Arabidopsis, which implies a generic jasmonate pathway with conserved signal components in different plant species.

Collaboration


Dive into the Wen Peng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunmei Ren

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bida Gao

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chengyun Han

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Zhu

Hunan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge