Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenbing Dai is active.

Publication


Featured researches published by Wenbing Dai.


Biomaterials | 2012

The use of a tumor metastasis targeting peptide to deliver doxorubicin-containing liposomes to highly metastatic cancer

Zhaohui Wang; Yang Yu; Wenbing Dai; Jingkai Lu; Jingrong Cui; Hounan Wu; Lan Yuan; Hua Zhang; Xueqing Wang; Xuan Zhang; Qiang Zhang

Tumor metastasis is responsible for 90% of cancer-associated deaths and highly metastatic cancers are more prone to form metastasis foci and acquire the drug resistance. Here, a nanocarrier system (TMT-LS) has been constructed by modification of stealth liposomes with a metastatic cancer specific peptide, using the unmodified stealth liposomes (LS) as the control. The active targeted nanocarriers presented satisfactory particle size (about 100 nm) and drug release characteristics in vitro. Highly metastatic cancer cells (MDA-MB-435S and MDA-MB-231) and non-metastatic cancer cells (MCF-7) were applied as tumor cell models. The highly metastatic cancer cells were found to endocytose more TMT-LS in a faster way than TS, through a receptor-mediated pathway proved by specific receptor inhibition. Co-localization technique indicated the integrity of nanocarriers in cytoplasm. The significant targeting of TMT-LS to highly metastatic tumors was demonstrated in vivo and ex vivo in an orthotopic model as well as in a double tumor-bearing animal model with both metastatic and non-metastatic tumors in the same mouse. Importantly, the active targeted drug delivery system was found to penetrate deeper into tumor mass and have a longer retention within the malignant tissue. Further, TMT-LS greatly facilitated the efficacy of doxorubicin loaded in terms of inhibiting xenograft tumor growth and inducing cancer cell apoptosis, with only minor side effects. Together, the specific nanocarriers hold great potential in the development of nanomedicine for diagnosis and therapy of metastatic tumor.


Biomaterials | 2013

The transport pathways of polymer nanoparticles in MDCK epithelial cells.

Bing He; Zengrong Jia; Wenwen Du; Chao Yu; Yuchen Fan; Wenbing Dai; Lan Yuan; Hua Zhang; Xueqing Wang; Xuan Zhang; Qiang Zhang

Epithelial cell membranes as the typical biological barrier constitute the prime obstacle for the transport of therapeutic agents including nanomedicines. The previous studies on the interaction between nanomedicines and cells are mostly emphasized on cellular uptake and intracellular trafficking, but seldom on epithelial cells, although more and more oral nanomedicines are available now. In an attempt to clarify the transport pathways of nanomedicines in epithelial cells, the different molecular mechanisms among endocytosis, exocytosis and transcytosis processes were carefully studied and compared here using a kind of polymer nanoparticles (PNs) and MDCK epithelial cells as models. As the result, their similarity and difference were demonstrated. The similarities among all the three processes included the mediation of lipid rafts, the involvement of some protein kinases such as protein tyrosine kinase (PTK), protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K), and the existence of multiple pathways. However, the difference among these processes was very significant, including different pathways, and especially the disparate effects of lipid rafts and protein kinases for different processes. The endocytosis involved both lipid raft and clathrin mechanisms but no macropinocytosis, via the invagination of membrane but no pore formation, the exocytosis contained ER/Golgi and Golgi/PM pathways, and transcytosis included AEE/CE/BSE and Golgi/BSE pathways. The roles of lipid rafts on endocytosis were positive but that on exocytosis and transcytosis was negative. The impacts of PTK and PKC on endocytosis were positive, while the influences of PTK, PKC and P13K on AEE/CE/BSE, as well as PTK and P13K on Golgi/BSE transcytosis pathways were negative. Moreover, the discrepancy between inward and outward transport of PNs elucidated an interesting fact that the endocytosis was rather easy and outward transport including exocytosis and transcytosis was rather difficult. Finally, it was indicated by comparison with previous reports that the molecular mechanisms between PNs and macromolecules such as proteins were also dissimilar.


Journal of Controlled Release | 2011

Materializing sequential killing of tumor vasculature and tumor cells via targeted polymeric micelle system

Yiguang Wang; Tingyuan Yang; Xun Wang; Wenbing Dai; Xuan Zhang; Zaiquan Li; Qiang Zhang

The purpose of this study was to develop a targeted combinatorial polymeric micelle system that can sequentially kill tumor vasculature and tumor cells and increase the anticancer efficacy. Toward this goal, αvβ3 integrin-targeting peptide (RGD) functionalized polymeric micelles (RFPMs) based on the use of poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PLA) was developed. Doxorubicin was conjugated to the biodegradable PEG-PLA micelle core, and combretastatin A4 was physically encapsulated into micelles (RFPMs-DOX-CA4). The RFPMs-DOX-CA4 has a particle size of 29.2 ± 2.5nm with spherical shape and high encapsulation efficiency for both drugs (> 95%). The micelles exhibited sequential release kinetics for both drugs. Treatment with RFPMs-DOX-CA4 resulted in the sequential killing of endothelial cells and tumor cells in vitro. RFPMs displayed prolonged circulation time and more drug accumulation in solid tumor than unfunctionalized polymeric micelles (UFPMs). In B16-F10 tumor-bearing mice, RFPMs-DOX-CA4 showed stronger tumor growth inhibition and significantly higher survival rate compared with the other treatment groups. Treatment with RFPMs-DOX-CA4 caused a dramatic destruction of tumor vasculature and reduction of tumor cell proliferation in vivo. These results suggested that the integrated strategy can be exploited as a potential treatment modality for cancer.


Biomaterials | 2013

The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin

Yuchen Fan; Wenwen Du; Bing He; Fengying Fu; Lan Yuan; Hounan Wu; Wenbing Dai; Hua Zhang; Xueqing Wang; Xuan Zhang; Qiang Zhang

Interstitial fluid pressure (IFP) in tumor is much higher than that in normal tissue and it constitutes a great obstacle for the delivery of chemodrugs, which makes it a potential target for cancer therapy. In this study, imatinib, a molecular targeting drug, was loaded in sterically stabilized liposomes (SSL-IMA) to reduce the tumor IFP, in an attempt to deliver more liposomal doxorubicin (SSL-DOX) into tumor tissue. In a mouse B16 melanoma model, intravenous injection of 20 mg/kg SSL-IMA achieved the most reduction of tumor IFP and the effect lasted for at least 50 h with the least hematotoxicity. However, intragastric administration of 100 mg/kg free IMA did not decrease the tumor IFP significantly. Mechanisms of the reduction of tumor IFP by SSL-IMA were proved to be the inhibition of PDGF receptor beta, the inhibition of tumor fibroblasts as well as the anti-angiogenesis effect of SSL-IMA. Then it was demonstrated by in vivo imaging that the decrease of tumor IFP by SSL-IMA led to a more and longer intratumoral distribution of the lipid vehicles. The improved delivery was proved again in the anti-tumor study. The combination of SSL-IMA and SSL-DOX inhibited tumor growth and induced apoptosis of tumor cells the most, at a low dose in which neither SSL-DOX nor SSL-IMA showed obvious anti-tumor efficacy. Since no synergy against B16 cells was found between SSL-IMA and SSL-DOX, it was clear that the improved combinational therapy was basically due to the decrease of tumor IFP by SSL-IMA. In conclusion, reducing tumor IFP by SSL-IMA seems to be a promising strategy to potentiate chemotherapies.


Biomaterials | 2014

Targeting efficiency of RGD-modified nanocarriers with different ligand intervals in response to integrin αvβ3 clustering.

Zhaoming Guo; Bing He; Hongwei Jin; Haoran Zhang; Wenbing Dai; Liang-Ren Zhang; Hua Zhang; Xueqing Wang; Xuan Zhang; Qiang Zhang

Receptor change induced by ligand binding is a new issue to face in the field of targeted delivery. Receptor clustering, the main pattern of receptor changes, decreases the affinity between ligand and receptor due to the redistribution of receptor position. In an attempt to respond to such challenge, we designed and constructed three RGD-modified nanocarriers with different ligand intervals: stealth liposomes modified with the monomeric RGD (moRGD-LP), dimeric RGD (diRGD-LP) and a special dimeric RGD with a linker between two cyclic RGD motifs (P-diRGD-LP). The αvβ3-positive and -negative tumor cells (Melanoma B16 and MCF-7) were used as the cell models. As a result, P-diRGD-LP demonstrated strongest interaction with B16 cells in surface plasmon resonance study and highest cellular uptake in B16 cells in real-time confocal analysis. The enhanced endocytosis of P-diRGD-LP was found to be αvβ3-mediated and P-diRGD-LP increased the involvement of the clathrin-dependent pathway. Importantly, P-diRGD-LP demonstrated the best targeting effect in B16-tumor bearing mice in both in vivo and ex vivo near-infrared fluorescent images, about 2.4-fold that of moRGD-LP and 2.8-fold that of diRGD-LP at 3 h. Further, we validated integrin αvβ3 clustering on B16 cells via a single-molecule imaging by a total internal reflection fluorescence microscopy. Finally, the 3D models of αvβ3 clustering suggested a receptor interval within 41.916-65.779 Å, while the molecular computation revealed an RGD ligand interval of 20.944 Å, 42.753 Å and 78.196 Å for diRGD-LP, P-diRGD-LP and moRGD-LP, respectively, confirming the best matching between clustered αvβ3 and P-diRGD-LP. In conclusion, P-diRGD-LP could achieve higher targeting to αvβ3-positive tumor via the enhanced interaction based on the better ligand-receptor compatibility. The design of targeted nanocarriers against receptor clustering might provide new insight into the nanotechnology-based anticancer therapy.


Biomaterials | 2014

Hydrophobic penetrating peptide PFVYLI-modified stealth liposomes for doxorubicin delivery in breast cancer therapy

Defu Cai; Wei Gao; Bing He; Wenbing Dai; Hua Zhang; Xueqing Wang; Xuan Zhang; Qiang Zhang

Based on the hydrophobic interaction with biomembranes, PFVYLI (PFV), a hydrophobic penetration peptide (HPP), was initially introduced to modify doxorubicin-loaded stealth-sustained liposomes (PFV-SSLs-DOX) against different breast cancer cell phenotypes irrespective of their receptor expression or antigen presence. The physicochemical characteristics of PFV-SSLs were determined with approximately 100 nm size, satisfactory distribution and high encapsulation. In addition, drug release experiments demonstrated that modification with PFV has a negligible influence on the release profile of liposomes. Surface plasmon resonance (SPR) analysis revealed that PFV-modified liposomes could increase the binding proportion of PFV-SSLs with a model cell membrane. It was demonstrated that modification with PFV highly facilitated the intracellular delivery of DOX-loaded liposomes and enhanced cytotoxicity via a hydrophobic interaction. An endocytosis inhibition assay revealed a combination of cellular internalization mechanisms for PFV-SSLs involving lipid raft and clathrin-mediated endocytosis in a temperature-dependent manner. The PFV-modified liposomes displayed more lasting accumulation in the tumor and better tumor growth inhibition with relatively low systemic and cardiac toxicity. In conclusion, PFV-SSLs might be a promising delivery system for the delivery of different therapeutic or imaging agents to heterogeneous tumors. More significantly, this study provides a new perspective on developing HPP-modified drug delivery system for antitumor therapy.


Molecular Pharmaceutics | 2014

Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo.

Xingxing Chuan; Qin Song; Jialiang Lin; Xianhui Chen; Hua Zhang; Wenbing Dai; Bing He; Xueqing Wang; Qiang Zhang

To address the obstacles facing cancer chemotherapeutics, including toxicity, side effects, water insolubility, and lack of tumor selectivity, a novel stimuli-responsive drug-delivery system was developed based on paclitaxel-loaded poly(ethylene glycol)-disulfide-paclitaxel conjugate nanoparticles (PEG-SS-PTX/PTX NPs). The formulation emphasizes several benefits, including polymer-drug conjugates/prodrugs, self-assembled NPs, high drug content, redox responsiveness, and programmed drug release. The PTX-loaded, self-assembled NPs, with a uniform size of 103 nm, characterized by DLS, TEM, XRD, DSC, and (1)H NMR, exhibited excellent drug-loading capacity (15.7%) and entrapment efficiency (93.3%). PEG-SS-PTX/PTX NPs were relatively stable under normal conditions but disassembled quickly under reductive conditions, as indicated by their triggered-aggregation phenomena and drug-release profile in the presence of dithiothreitol (DTT), a reducing agent. Additionally, by taking advantage of the difference in the drug-release rates between physically loaded and chemically conjugated drugs, a programmed drug-release phenomenon was observed, which was attributed to a higher concentration and longer action time of the drugs. The influence of PEG-SS-PTX/PTX NPs on in vitro cytotoxicity, cell cycle progression, and cellular apoptosis was determined in the MCF-7 cell line, and the NPs demonstrated a superior anti-proliferative activity associated with PTX-induced cell cycle arrest in G2/M phase and apoptosis compared to their nonresponsive counterparts. Moreover, the redox-responsive NPs were more efficacious than both free PTX and the non-redox-responsive formulation at equivalent doses of PTX in a breast cancer xenograft mouse model. This redox-responsive PTX drug delivery system is promising and can be explored for use in effective intracellular drug delivery.


Journal of Controlled Release | 2014

The development of site-specific drug delivery nanocarriers based on receptor mediation

Xueqing Wang; Suxin Li; Yujie Shi; Xingxing Chuan; Ji Li; Ting Zhong; Hua Zhang; Wenbing Dai; Bing He; Qiang Zhang

Since they were first reported in 1980, site-specific drug delivery nanocarriers have progressed greatly with the development of nanotechnology and biotechnology, especially in the anti-tumor field. Currently, some of the ligand peptides like RGD have become hot targeting molecules with extensive academic studies and some receptor-medicated nanocarriers are now in clinical trials. Homing peptides have been the preferred ligands thus far due to their low molecular weight, low antigenicity, high modification ratios and low interference in vivo. The major benefit of receptor-mediated nanocarriers over passive ones may be their accumulation within tumors for longer period of time due to their binding to and/or their uptake by cancer cells, preventing them from fast redistribution into systemic circulation. The studies on receptor-mediated nanocarriers are very dynamic currently, advancing gradually from these against non-therapeutic targets to these against therapeutic targets. And recently, more studies were focused on these systems against multiple receptors and the combination therapies with receptor-mediated nanocarriers. However, we still face great challenges, especially in the understanding of receptors, the key issue for receptor-mediated delivery. This review presents the past and ongoing studies on various types of drug delivery systems based on receptor mediation, discusses the prospective and challenges, and introduces the possible trend of study in the future.


Theranostics | 2017

Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment

Binlong Chen; Wenbing Dai; Bing He; Hua Zhang; Xueqing Wang; Yiguang Wang; Qiang Zhang

The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects.


International Journal of Pharmaceutics | 2014

Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo.

Jingkai Lu; Xingxing Chuan; Hua Zhang; Wenbing Dai; Xinglin Wang; Xueqing Wang; Qiang Zhang

Previously, PEGylated paclitaxel (PEG-PTX) was found not favorable as a polymer prodrug because of its poor antitumor efficiency. But surprisingly, it was found in our study that PEG-PTX could form a novel nanoparticle system with free PTX. To address how this system works, we compared PTX loaded PEG-PTX nanoparticles (PEG-PTX/PTX) with PTX loaded PEG-PLA micelles (PEG-PLA/PTX) or PTX injection available (Taxol(®)) in vitro and in vivo. Firstly, it was found that PEG-PTX/PTX was more stable in aqueous solution than PEG-PLA/PTX in terms of PTX crystal formation and drug release. Then it was demonstrated that coumarin loaded PEG-PTX nanoparticles had a much higher uptake in MCF-7 cells compared to coumarin loaded PEG-PLA micelles. The in vivo imaging study revealed that DIR or DID (near infrared fluorescent substances) loaded PEG-PTX nanoparticles distributed more in tumors in MCF-7 tumor bearing mice than DIR or DID loaded PEG-PLA micelles and solvent system of Taxol(®). In the efficacy study with MCF-7 tumor bearing mice, PEG-PTX/PTX showed significantly higher antitumor activity than PEG-PLA/PTX at the same PTX dosage. At the dose of 10mg free PTX per kg, PEG-PTX/PTX displayed similar efficacy as Taxol(®) but less toxicity evaluated by the loss of body weight. With the increase of free PTX to 15 mg/kg, PEG-PTX/PTX showed significantly better efficacy than Taxol(®). In conclusion, with favorable characteristics in stability, cellular uptake, cytotoxicity, biodistribution, safety and efficacy, PEG-PTX/PTX seems highly potential as a nanocarrier for PTX delivery.

Collaboration


Dive into the Wenbing Dai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Zhang

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Hua Zhang

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge