Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xueqing Wang is active.

Publication


Featured researches published by Xueqing Wang.


Biomaterials | 2014

Targeting efficiency of RGD-modified nanocarriers with different ligand intervals in response to integrin αvβ3 clustering.

Zhaoming Guo; Bing He; Hongwei Jin; Haoran Zhang; Wenbing Dai; Liang-Ren Zhang; Hua Zhang; Xueqing Wang; Xuan Zhang; Qiang Zhang

Receptor change induced by ligand binding is a new issue to face in the field of targeted delivery. Receptor clustering, the main pattern of receptor changes, decreases the affinity between ligand and receptor due to the redistribution of receptor position. In an attempt to respond to such challenge, we designed and constructed three RGD-modified nanocarriers with different ligand intervals: stealth liposomes modified with the monomeric RGD (moRGD-LP), dimeric RGD (diRGD-LP) and a special dimeric RGD with a linker between two cyclic RGD motifs (P-diRGD-LP). The αvβ3-positive and -negative tumor cells (Melanoma B16 and MCF-7) were used as the cell models. As a result, P-diRGD-LP demonstrated strongest interaction with B16 cells in surface plasmon resonance study and highest cellular uptake in B16 cells in real-time confocal analysis. The enhanced endocytosis of P-diRGD-LP was found to be αvβ3-mediated and P-diRGD-LP increased the involvement of the clathrin-dependent pathway. Importantly, P-diRGD-LP demonstrated the best targeting effect in B16-tumor bearing mice in both in vivo and ex vivo near-infrared fluorescent images, about 2.4-fold that of moRGD-LP and 2.8-fold that of diRGD-LP at 3 h. Further, we validated integrin αvβ3 clustering on B16 cells via a single-molecule imaging by a total internal reflection fluorescence microscopy. Finally, the 3D models of αvβ3 clustering suggested a receptor interval within 41.916-65.779 Å, while the molecular computation revealed an RGD ligand interval of 20.944 Å, 42.753 Å and 78.196 Å for diRGD-LP, P-diRGD-LP and moRGD-LP, respectively, confirming the best matching between clustered αvβ3 and P-diRGD-LP. In conclusion, P-diRGD-LP could achieve higher targeting to αvβ3-positive tumor via the enhanced interaction based on the better ligand-receptor compatibility. The design of targeted nanocarriers against receptor clustering might provide new insight into the nanotechnology-based anticancer therapy.


Theranostics | 2017

Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment

Binlong Chen; Wenbing Dai; Bing He; Hua Zhang; Xueqing Wang; Yiguang Wang; Qiang Zhang

The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects.


Biomaterials | 2014

Combined mTOR inhibitor rapamycin and doxorubicin-loaded cyclic octapeptide modified liposomes for targeting integrin α3 in triple-negative breast cancer.

Wenbing Dai; Fang Yang; Ling Ma; Yuchen Fan; Bing He; Qihua He; Xueqing Wang; Hua Zhang; Qiang Zhang

A novel therapeutic strategy combining mTOR inhibitor rapamycin (RAPA) and doxorubicin (DOX)-loaded cyclic octapeptide liposomes for targeting integrin α3 was expected to combat the triple-negative breast cancer (TNBC). RAPA was loaded into PEG-PCL polymer micelles (M-RAPA) to realize solubilization. Flow cytometry analysis and laser confocal microscopy were used to evaluate the inxa0vitro cellular uptake. The inxa0vivo tumor targeting and bio-distribution were investigated by living fluorescence imaging. As the results, LXY modification significantly enhanced the cellular uptake of liposomal DOX in integrin α3 overexpressed TNBC cells (MDA-MB-231) inxa0vitro and accordingly improved the tumor accumulation of liposomes inxa0vivo. When used alone or in combination with LXY-LS-DOX, M-RAPA could greatly inhibit the expression of HIF-1α protein, which is always highly expressed in malignant cancers and involved in tumor angiogenesis, proliferation, therapeutic resistance and poor prognosis. Meanwhile, the improved efficacy of combined targeted therapy with LXY-LS-DOX and M-RAPA was demonstrated by the inxa0vitro cytotoxicity against model TNBC cells and inxa0vivo anti-tumor activity against mouse bearing TNBC model. These results suggested that the targeted combinational therapy based on LXY-LS-DOX and M-RAPA systems may provide a rational strategy to improve therapeutic outcomes of TNBC.


Journal of Controlled Release | 2015

Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer

Jijun Fu; Dan Wang; Dong Mei; Haoran Zhang; Zhaoyang Wang; Bing He; Wenbing Dai; Hua Zhang; Xueqing Wang; Qiang Zhang

The biomimetic delivery system (BDS) based on special types of endogenous cells like macrophages and T cells, has been emerging as a novel strategy for cancer therapy, due to its tumor homing property and biocompatibility. However, its development is impeded by complicated construction, low drug loading or negative effect on the cell bioactivity. The present report constructed a BDS by loading doxorubicin (DOX) into a mouse macrophage-like cell line (RAW264.7). It was found that therapeutically meaningful amount of DOX could be loaded into the RAW264.7 cells by simply incubation, without significantly affecting the viability of the cells. Drug could release from the BDS and maintain its activity. RAW264.7 cells exhibited obvious tumor-tropic capacity towards 4T1 mouse breast cancer cells both in vitro and in vivo, and drug loading did not alter this tendency. Importantly, the DOX loaded macrophage system showed promising anti-cancer efficacy in terms of tumor suppression, life span prolongation and metastasis inhibition, with reduced toxicity. In conclusion, it is demonstrated that the BDS developed here seems to overcome some of the main issues related to a BDS. The DOX loaded macrophages might be a potential BDS for targeted cancer therapy.


Journal of Controlled Release | 2015

A novel localized co-delivery system with lapatinib microparticles and paclitaxel nanoparticles in a peritumorally injectable in situ hydrogel.

Hongxiang Hu; Zhiqiang Lin; Bing He; Wenbing Dai; Xueqing Wang; Xuan Zhang; Hua Zhang; Qiang Zhang

The combination of high dose of oral lapatinib (LAPA), a HER2 tyrosine kinase inhibitor, with intravenous paclitaxel (PTX) exhibited a clinical survival advantage compared with PTX alone against HER2 positive breast cancer. However, localized delivery system with high regional drug level may greatly decrease the dose of drug, leading to higher safety and lower cost. In an attempt to imitate the fast and slow exposure of these two drugs in clinic use, we incorporated PTX nanoparticles and LAPA microparticles into a thermosensitive hydrogel (PL-gel) for peritumoral injection, using PTX-gel plus LAPA-oral (P-gel+L-oral) and so on as controls. To visually study in vitro or in vivo, PTX/DID and LAPA/DIR hybrid crystals were prepared. In vitro and in vivo studies demonstrated the fast and short-term release of PTX, as well as the slow and long-term release of LAPA from the PL-gel. The most synergistic effect was found between LAPA and PTX on the cell line overexpressing both HER2 and P-gp, and the mechanisms related to LAPA-induced inhibition on P-gp expression, more G2/M phase arrest of PTX and more uptake of PTX in tumor cells. With a dose of LAPA in PL-gel group only less than 5% of that in P-gel+L-oral group, PL-gel demonstrated significant tumor suppression similar to P-gel+L-oral group, and showed longer mice survival time. Besides, PL-gel achieved more steady LAPA accumulation in tumors and revealed significantly less toxicity compared with P-gel+L-oral group. To summarize, this localized co-delivery system with good synergistic effects between LAPA and PTX might offer a potential strategy for HER2 and P-gp positive breast cancer.


Biomaterials | 2014

The impact of a chlorotoxin-modified liposome system on receptor MMP-2 and the receptor-associated protein ClC-3.

Chao Qin; Bing He; Wenbing Dai; Zhiqiang Lin; Hua Zhang; Xueqing Wang; Xuan Zhang; Guangji Wang; Lifang Yin; Qiang Zhang

Currently, it is unknown whether a receptor-associated protein will be affected when a ligand modified delivery system interacts with its receptor. Besides, chlorotoxin (ClTx)-modified liposomes can target to glioma cells, but the target molecule is not clear: MMP-2, ClC-3 or both? Here a comparative study of ClTx-conjugated liposomes was conducted on two types of tumor cells: U87, a human glioma cell line with high expression of both MMP-2 and ClC-3, and A549, a human lung cancer cell line with expression of only MMP-2. ClTx-modified liposomes behaved similarly in these two cancer cells in terms of inxa0vitro cell uptake, endocytosis pathway, intracellular trafficking and inxa0vivo targeting efficacy, though the two tested cell lines were very different in ClC-3 expression. These results revealed that the targeted delivery of ClTx modified liposomes to U87 tumor was MMP-2-mediated and not correlated with the chloride channel ClC-3. On the other hand, ClTx modified on the liposomes did activate the receptor-associated protein ClC-3 via the binding with MMP-2, leading to the inhibition on cell migration and chloride currents. This is significant because cell migration is a key step in tumor metastasis. Interestingly, higher inxa0vitro cellular uptake and lower inxa0vivo tumor accumulation of liposomal systems was found in U87 compared to the A549 model, possibly due to the biological differences between inxa0vitro and inxa0vivo models. In general, ClTx-modified delivery systems may potentially target to tumors other than glioma that express a high level of MMP-2, and its effect on ClC-3 may help prevent tumor metastasis.


Journal of Controlled Release | 2016

Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system

Binlong Chen; Wenbing Dai; Dong Mei; Tongzhou Liu; Suxin Li; Bo He; Bing He; Lan Yuan; Hua Zhang; Xueqing Wang; Qiang Zhang

Cancer-associated fibroblasts (CAFs) not only support tumorigenesis and tumor metastasis by reciprocal cellular cross-talk with cancer cells, but also remodel the extracellular matrix (ECM) and architecture of tumor microenvironment. This leads to poor tumor penetration of traditional chemotherapeutic nanomedicines and resulting drug resistance. In this study, we use a novel tumor stroma-targeted nanovehicle (FH-SSL-Nav) to specifically eradicate CAFs, promote tumor penetration of nanomedicines and cut off the stromas support to cancer cells. FH-SSL-Nav exhibited excellent and comprehensive tumor microenvironment modulation including downregulation ECM deposition, decreasing interstitial fluid pressure (IFP) and facilitating blood perfusion. As a result, more chemotherapeutic drug delivery systems penetrated deep into tumor spheroids in vitro and tumor tissues in vivo. Furthermore, chemotherapeutic drug resistance induced by microenvironment was partly reversed by FH-SSL-Nav. In a human Hep G2 xenograft nude mouse model, FH-SSL-Nav greatly improved the tumor suppression of cancer cell-targeted liposomal doxorubicin (7pep-SSL-DOX) with low dose and low toxicity. Since Nav and DOX exhibited no synergy against Hep G2 cells, it was clear that the improved antitumor efficacy was basically due to the comprehensive tumor microenvironment priming by FH-SSL-Nav.


Advanced Drug Delivery Reviews | 2017

Combination antitumor therapy with targeted dual-nanomedicines

Wenbing Dai; Xiaoyou Wang; Ge Song; Tongzhou Liu; Bing He; Hua Zhang; Xueqing Wang; Qiang Zhang

&NA; Combination therapy is one of the important treatment strategies for cancer at present. However, the outcome of current combination therapy based on the co‐administration of conventional dosage forms is suboptimal, due to the short half‐lives of chemodrugs, their deficient tumor selectivity and so forth. Nanotechnology‐based targeted delivery systems show great promise in addressing the associated problems and providing superior therapeutic benefits. In this review, we focus on the combination of therapeutic strategies between different nanomedicines or drug‐loaded nanocarriers, rather than the co‐delivery of different drugs via a single nanocarrier. We introduce the general concept of various targeting strategies of nanomedicines, present the principles of combination antitumor therapy with dual‐nanomedicines, analyze their advantages and limitations compared with co‐delivery strategies, and overview the recent advances of combination therapy based on targeted nanomedicines. Finally, we reviewed the challenges and future perspectives regarding the selection of therapeutic agents, targeting efficiency and the gap between the preclinical and clinical outcome. Graphical abstract Figure. No caption available.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

A tenascin C targeted nanoliposome with navitoclax for specifically eradicating of cancer-associated fibroblasts

Binlong Chen; Zhaoyang Wang; Jing Sun; Qin Song; Bing He; Hua Zhang; Xueqing Wang; Wenbing Dai; Qiang Zhang

Cancer-associated fibroblasts (CAFs) play a vitally important role during tumor progression. Navitoclax (Nav) can specifically induce apoptosis in CAFs. The present study aims to develop a novel CAF-targeted nanoliposome for cancer therapy. Nav-loaded nanoliposomes modified with peptide FH (FH-SSL-Nav), which specifically binds to tenascin C, a protein mainly expressed by CAFs, were formulated and characterized. Several experiments were performed to evaluate CAFs selective apoptosis, targeting and eradicating. Compared with SSL-Nav, FH-SSL-Nav achieved higher cellular uptake, and exhibited stronger cytotoxicity in vitro. The in vivo tumor stroma targeting effect was further confirmed by near infrared imaging. Accordingly, FH-SSL-Nav displayed improved tumor growth inhibition by eradicating CAFs in Hep G2 tumor-bearing nude mice model. In conclusion, FH-SSL-Nav could achieve targeting delivery of Nav to CAFs in vitro and in vivo, and may offer a potential strategy for cancer therapy based on tumor stroma. From the Clinical Editor: The progression of cancer cells often depends on the underlying tumor microenvironment, in which cancer-associated fibroblasts play an important role. In this article, the authors developed targeted therapy against CAFs using liposomes as carriers. This new modality was shown to be more effective in tumor killing both in vitro and in vivo. The finding may open a new era in cancer therapy.


Journal of Controlled Release | 2016

The modulation of tumor vessel permeability by thalidomide and its impacts on different types of targeted drug delivery systems in a sarcoma mouse model

Dan Wang; Jijun Fu; Yujie Shi; Dong Peng; Lan Yuan; Bing He; Wenbing Dai; Hua Zhang; Xueqing Wang; Jie Tian; Qiang Zhang

The transport of nanocarriers is supposed to be based on EPR effect which is affected by diverse factors, so the modulation of EPR effect seems very significant for nanocarriers including targeted drug delivery systems (TDDSs). Besides, it is extremely unclear how the EPR effect impacts the fate of different types of TDDSs. To make the most advantage of EPR effect for TDDSs, it is definitely necessary to clarify these key issues. Here, we construct and characterize various TDDSs, including sterically-stabilized liposomes (SSL), RGD functionalized SSL (RGD-SSL) and novel 7PEP functionalized SSL (7PEP-SSL), loaded with doxorubicin (DOX), DIR or DID. Here, we modulate the permeability of tumor vessels by thalidomide (THD) in a sarcoma-bearing EPR mouse model via monitoring endogenous deoxygenated hemoglobin in circulation, and then we confirm the effect of THD on tumor vessel permeability by vessel density, vessel maturity, VEGF expression and so on. Importantly, we investigate and find the impacts of EPR effect on the antitumor efficacy, in vivo distribution and intratumoral microdistribution of the three TDDSs. Interestingly, the EPR effects affect different TDDSs differently. The elevated EPR effect enhances the tumor accumulation of SSL and RGD-SSL but fails to increase their efficacy. The RGD-SSL exhibits the best efficacy with the least fluctuation, demonstrating the advantage of angiogenesis targeted systems. 7PEP-SSL seems the biggest beneficiary of EPR effect, suggesting the significance of EPR modulation for cells targeted systems. Generally, this study demonstrates the feasibility of modulating EPR effect bidirectionally by THD as well as the impacts of EPR effect on different type of testing TDDSs based on this animal model. It certainly provides novel insight into the design and potential use of TDDSs.

Collaboration


Dive into the Xueqing Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge