Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendy C. Burns is active.

Publication


Featured researches published by Wendy C. Burns.


Circulation Research | 2003

A Breaker of Advanced Glycation End Products Attenuates Diabetes-Induced Myocardial Structural Changes

Riccardo Candido; Josephine M. Forbes; Merlin C. Thomas; Vicki Thallas; Rachael G. Dean; Wendy C. Burns; Christos Tikellis; Rebecca H. Ritchie; Stephen M. Twigg; Mark E. Cooper; Louise M. Burrell

&NA; The formation of advanced glycation end products (AGEs) on extracellular matrix components leads to accelerated increases in collagen cross linking that contributes to myocardial stiffness in diabetes. This study determined the effect of the crosslink breaker, ALT‐711 on diabetes‐induced cardiac disease. Streptozotocin diabetes was induced in Sprague‐Dawley rats for 32 weeks. Treatment with ALT‐711 (10 mg/kg) was initiated at week 16. Diabetic hearts were characterized by increased left ventricular (LV) mass and brain natriuretic peptide (BNP) expression, decreased LV collagen solubility, and increased collagen III gene and protein expression. Diabetic hearts had significant increases in AGEs and increased expression of the AGE receptors, RAGE and AGE‐R3, in association with increases in gene and protein expression of connective tissue growth factor (CTGF). ALT‐711 treatment restored LV collagen solubility and cardiac BNP in association with reduced cardiac AGE levels and abrogated the increase in RAGE, AGE‐R3, CTGF, and collagen III expression. The present study suggests that AGEs play a central role in many of the alterations observed in the diabetic heart and that cleavage of preformed AGE crosslinks with ALT‐711 leads to attenuation of diabetes‐associated cardiac abnormalities in rats. This provides a potential new therapeutic approach for cardiovascular disease in human diabetes. (Circ Res. 2003;92:785–792.)


Hypertension | 2003

Characterization of renal angiotensin - converting enzyme 2 in diabetic nephropathy

Christos Tikellis; Colin I. Johnston; Josephine M. Forbes; Wendy C. Burns; Louise M. Burrell; John Risvanis; Mark E. Cooper

Abstract—ACE2, initially cloned from a human heart, is a recently described homologue of angiotensin-converting enzyme (ACE) but contains only a single enzymatic site that catalyzes the cleavage of angiotensin I to angiotensin 1–9 [Ang(1–9)] and is not inhibited by classic ACE inhibitors. It also converts angiotensin II to Ang(1–7). Although the role of ACE2 in the regulation of the renin-angiotensin system is not known, the renin-angiotensin system has been implicated in the pathogenesis of diabetic complications and in particular in diabetic nephropathy. Therefore, the aim of this study was to assess the possible involvement of this new enzyme in the kidney from diabetic Sprague-Dawley rats to compare and contrast it to ACE. ACE2 and ACE gene and protein expression were measured in the kidney after 24 weeks of streptozocin diabetes. ACE2 and ACE mRNA levels were decreased in diabetic renal tubules by ≈50% and were not influenced by ACE inhibitor treatment with ramipril. By immunostaining, both ACE2 and ACE protein were localized predominantly to renal tubules. In the diabetic kidney, there was reduced ACE2 protein expression that was prevented by ACE inhibitor therapy. The identification of ACE2 in the kidney, its modulation in diabetes, and the recent description that this enzyme plays a biological role in the generation and degradation of various angiotensin peptides provides a rationale to further explore the role of this enzyme in various pathophysiological states including diabetic complications.


Circulation | 2002

Prevention of Accelerated Atherosclerosis by Angiotensin-Converting Enzyme Inhibition in Diabetic Apolipoprotein E–Deficient Mice

Riccardo Candido; Karin Jandeleit-Dahm; Zemin Cao; Stefan P. Nesteroff; Wendy C. Burns; Stephen M. Twigg; Rodney J. Dilley; Mark E. Cooper; Terri J. Allen

Background—Atherosclerosis is a major complication of diabetes, but the mechanisms by which diabetes promotes macrovascular disease have not been fully delineated. Although several animal studies have demonstrated that inhibition of ACE results in a decrease in the development of atherosclerotic lesions, information about the potential benefits of these agents on complex and advanced atherosclerotic lesions as observed in long-term diabetes is lacking. The aim of this study was to evaluate whether treatment with the ACE inhibitor perindopril affects diabetes-induced plaque formation in the apolipoprotein E (apoE)-deficient mouse. Methods and Results—Diabetes was induced by injection of streptozotocin in 6-week-old apoE-deficient mice. Diabetic animals received treatment with perindopril (4 mg · kg−1 · d−1) or no treatment for 20 weeks. Nondiabetic apoE-deficient mice were used as controls. Induction of diabetes was associated with a 4-fold increase in plaque area compared with nondiabetic animals. This accelerated atherosclerosis was associated with a significant increase in aortic ACE expression and activity and connective tissue growth factor and vascular cell adhesion molecule-1 expression. Perindopril treatment inhibited the development of atherosclerotic lesions and diabetes-induced ACE, connective tissue growth factor, and vascular cell adhesion molecule-1 overexpression in the aorta. Conclusions—The activation of the local renin-angiotensin system in the diabetic aorta and the reduction in atherosclerosis with ACE inhibitor treatment provides further evidence that the renin-angiotensin system plays a pivotal role in the development and acceleration of atherosclerosis in diabetes.


The FASEB Journal | 2003

The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes

Josephine M. Forbes; Vicki Thallas; Merlin C. Thomas; Hank W. Founds; Wendy C. Burns; George Jerums; Mark E. Cooper

Renal accumulation of advanced glycation end products (AGEs) has been linked to the progression of diabetic nephropathy. Cleavage of pre‐formed AGEs within the kidney by a crosslink breaker, such as ALT‐711, may confer renoprotection in diabetes. STZ diabetic rats were randomized into a) no treatment (D); b) treatment with the AGE cross‐link breaker, ALT‐711, weeks 16–32 (DALT early); and c) ALT‐711, weeks 24–32 (DALT late). Treatment with ALT‐711 resulted in a significant reduction in diabetes‐induced serum and renal AGE peptide fluorescence, associated with decreases in renal carboxymethyllysine and RAGE immunostaining. Cross‐linking of tail tendon collagen seen in diabetic groups was attenuated only by 16 weeks of ALT‐711 treatment. ALT‐711, independent of treatment duration, retarded albumin excretion rate (AER), reduced blood pressure, and renal hypertrophy. It also reduced diabetes‐induced increases in gene expression of transforming growth factor β1 (TGF‐β1), connective tissue growth factor (CTGF), and collagen IV. However, glomerulosclerotic index, tubulointerstitial area, total renal collagen, nitrotyrosine, protein expression of collagen IV, and TGF‐β1 only showed improvement with early ALT treatment alone. This study demonstrates the utility of a cross‐link breaker as a treatment for diabetic nephropathy and describes effects not only on renal AGEs but on putative mediators of renal injury, such as prosclerotic cytokines and oxidative stress.


Diabetes | 2011

miR-200a Prevents Renal Fibrogenesis Through Repression of TGF-β2 Expression

Bo Wang; Philip Koh; Catherine E. Winbanks; Melinda T. Coughlan; Aaron McClelland; Anna Watson; Karin Jandeleit-Dahm; Wendy C. Burns; Merlin C. Thomas; Mark E. Cooper; Phillip Kantharidis

OBJECTIVE Progressive fibrosis in the diabetic kidney is driven and sustained by a diverse range of profibrotic factors. This study examines the critical role of microRNAs (miRNAs) in the regulation of the key fibrotic mediators, TGF-β1 and TGF-β2. RESEARCH DESIGN AND METHODS Rat proximal-tubular epithelial cells (NRK52E) were treated with TGF-β1 and TGF-β2 for 3 days, and expression of markers of epithelial-to-mesenchymal transition (EMT) and fibrogenesis were assessed by RT-PCR and Western blotting. The expression of miR-141 and miR-200a was also assessed, as was their role as translational repressors of TGF-β signaling. Finally, these pathways were explored in two different mouse models, representing early and advanced diabetic nephropathy. RESULTS Both TGF-β1 and TGF-β2 induced EMT and fibrogenesis in NRK52E cells. TGF-β1 and TGF-β2 also downregulated expression of miR-200a. The importance of these changes was demonstrated by the finding that ectopic expression miR-200a downregulated smad-3 activity and the expression of matrix proteins and prevented TGF-β–dependent EMT. miR-200a also downregulated the expression of TGF-β2, via direct interaction with the 3′ untranslated region of TGF-β2. The renal expression of miR-141 and miR-200a was also reduced in mouse models representing early and advanced kidney disease. CONCLUSIONS miR-200a and miR-141 significantly impact on the development and progression of TGF-β–dependent EMT and fibrosis in vitro and in vivo. These miRNAs appear to be intricately involved in fibrogenesis, both as downstream mediators of TGF-β signaling and as components of feedback regulation, and as such represent important new targets for the prevention of progressive kidney disease in the context of diabetes.


Journal of The American Society of Nephrology | 2006

Connective Tissue Growth Factor Plays an Important Role in Advanced Glycation End Product–Induced Tubular Epithelial-to-Mesenchymal Transition: Implications for Diabetic Renal Disease

Wendy C. Burns; Stephen M. Twigg; Josephine M. Forbes; Josefa Pete; Christos Tikellis; Vicki Thallas-Bonke; Merlin C. Thomas; Mark E. Cooper; Phillip Kantharidis

Epithelial-to-mesenchymal transition (EMT) of tubular cells contributes to the renal accumulation of matrix protein that is associated with diabetic nephropathy. Both TGF-beta1 and advanced glycation end products (AGE) are able to induce EMT in cell culture. This study examined the role of the prosclerotic growth factor connective tissue growth factor (CTGF) as a downstream mediator of these processes. EMT was assessed by the expression of alpha-smooth muscle actin, vimentin, E-cadherin, and matrix proteins and the induction of a myofibroblastic phenotype. CTGF, delivered in an adenovirus or as recombinant human CTGF (250 ng/ml), was shown to induce a partial EMT. This was not blocked by neutralizing anti-TGF-beta1 antibodies, suggesting that this action was TGF-beta1 independent. NRK-52E cells that were exposed to AGE-modified BSA (AGE-BSA; 40 microM) or TGF-beta1 (10 ng/ml) also underwent EMT. This was associated with the induction of CTGF gene and protein expression. Transfection with siRNA to CTGF was able to attenuate EMT-associated phenotypic changes after treatment with AGE or TGF-beta1. These in vitro effects correlate with the in vivo finding of increased CTGF expression in the diabetic kidney, which co-localizes on the tubular epithelium with sites of EMT. In addition, inhibition of AGE accumulation was able to reduce CTGF expression and attenuate renal fibrosis in experimental diabetes. These findings suggest that CTGF represents an important independent mediator of tubular EMT, downstream of the actions of AGE or TGF-beta1. This interaction is likely to play an important role in progressive diabetic nephropathy and strengthens the rationale to consider CTGF as a potential target for the treatment of diabetic nephropathy.


Diabetes | 2010

E-Cadherin Expression Is Regulated by miR-192/215 by a Mechanism That Is Independent of the Profibrotic Effects of Transforming Growth Factor-β

Bo Wang; Michal Herman-Edelstein; Philip Koh; Wendy C. Burns; Karin Jandeleit-Dahm; Anna Watson; Moin A. Saleem; Gregory J. Goodall; Stephen M. Twigg; Mark E. Cooper; Phillip Kantharidis

OBJECTIVE Increased deposition of extracellular matrix (ECM) within the kidney is driven by profibrotic mediators including transforming growth factor-β (TGF-β) and connective tissue growth factor (CTGF). We investigated whether some of their effects may be mediated through changes in expression of certain microRNAs (miRNAs). RESEARCH DESIGN AND METHODS Proximal tubular cells, primary rat mesangial cells, and human podocytes were analyzed for changes in the expression of key genes, ECM proteins, and miRNA after exposure to TGF-β (1–10 ng/μl). Tubular cells were also infected with CTGF-adenovirus. Kidneys from diabetic apoE mice were also analyzed for changes in gene expression and miRNA levels. RESULTS TGF-β treatment was associated with morphologic and phenotypic changes typical of epithelial-mesenchymal transition (EMT) including increased fibrogenesis in all renal cell types and decreased E-cadherin expression in tubular cells. TGF-β treatment also modulated the expression of certain miRNAs, including decreased expression of miR-192/215 in tubular cells, mesangial cells, which are also decreased in diabetic kidney. Ectopic expression of miR-192/215 increased E-cadherin levels via repressed translation of ZEB2 mRNA, in the presence and absence of TGF-β, as demonstrated by a ZEB2 3′-untranslated region luciferase reporter assay. However, ectopic expression of miR-192/215 did not affect the expression of matrix proteins or their induction by TGF-β. In contrast, CTGF increased miR-192/215 levels, causing a decrease in ZEB2, and consequently increased E-cadherin mRNA. CONCLUSIONS These data demonstrate the linking role of miRNA-192/215 and ZEB2 in TGF-β/CTGF–mediated changes in E-cadherin expression. These changes appear to occur independently of augmentation of matrix protein synthesis, suggesting that a multistep EMT program is not necessary for fibrogenesis to occur.


Journal of Histochemistry and Cytochemistry | 2005

Connective Tissue Growth Factor and Cardiac Fibrosis after Myocardial Infarction

Rachael G. Dean; Leanne C. Balding; Riccardo Candido; Wendy C. Burns; Zemin Cao; Stephen M. Twigg; Louise M. Burrell

The temporal and spatial expression of transforming growth factor (TGF)-β1 and connective tissue growth factor (CTGF) was assessed in the left ventricle of a myocardial infarction (MI) model of injury with and without angiotensin-converting enzyme (ACE) inhibition. Coronary artery ligated rats were killed 1, 3, 7, 28, and 180 days after MI. TGF-β1, CTGF, and procollagen α1(I) mRNA were localized by in situ hybridization, and TGF-β1 and CTGF protein levels by immunohistochemistry. Collagen protein was measured using picrosirius red staining. In a separate group, rats were treated for 6 months with an ACE inhibitor. There were temporal and regional differences in the expression of TGF-β1, CTGF, and collagen after MI. Procollagen α1(I) mRNA expression increased in the border zone and scar peaking 1 week after MI, whereas collagen protein increased in all areas of the heart over the 180 days. Expression of TGF-β1 mRNA and protein showed major increases in the border zone and scar peaking 1 week after MI. The major increases in CTGF mRNA and protein occurred in the viable myocardium at 180 days after MI. Long-term ACE inhibition reduced left ventricular mass and decreased fibrosis in the viable myocardium, but had no effect on cardiac TGF-β1 or CTGF. TGF-β1 is involved in the initial, acute phase of inflammation and repair after MI, whereas CTGF is involved in the ongoing fibrosis of the heart. The antifibrotic benefits of captopril are not mediated through a reduction in CTGF.


Journal of The American Society of Nephrology | 2002

Angiotensin type 2 receptor antagonism confers renal protection in a rat model of progressive renal injury.

Zemin Cao; Fabrice Bonnet; Riccardo Candido; Stefan P. Nesteroff; Wendy C. Burns; Hiroshi Kawachi; Fujio Shimizu; Robert M. Carey; Marc de Gasparo; Mark E. Cooper

The role of the angiotensin type 2 (AT(2)) receptor in the pathogenesis of progressive renal injury has not been previously elucidated. The renal expression of the AT(1) and AT(2) receptors in subtotally nephrectomized rats (STNx) and the effects of AT(2) receptor blockade on renal injury were explored. Reduced renal expression of the AT(1) but not the AT(2) receptor was observed in STNx by reverse transcription-PCR, by in vitro autoradiography, and by immunohistochemical staining. The STNx rats were randomly assigned to AT(1) receptor antagonist valsartan, AT(2) receptor antagonist PD123319, or the combination of both for 4 wk. Increased proteinuria in STNx rats was reduced by PD123319 but to a lesser degree when compared with valsartan. Reduced gene and protein expression of the slit diaphragm protein nephrin was prevented by either valsartan or PD123319. Expression of osteopontin, proliferating cell nuclear antigen, and monocyte/macrophage infiltration was increased in STNx rats and was reduced by both AT(1) and AT(2) receptor antagonists. These effects of AT(2) receptor antagonism were observed in the presence of increased BP in STNx rats. These findings suggest that blockade of the AT(2) receptor alone confers a degree of renal protection; in particular, it seems that the combination of the AT(1) and AT(2) receptor antagonists may confer additive renal effects than either receptor antagonist as monotherapy.


Journal of The American Society of Nephrology | 2004

Accelerated Nephropathy in Diabetic Apolipoprotein E-Knockout Mouse: Role of Advanced Glycation End Products

Markus Lassila; Kwee K. Seah; Terri J. Allen; Vicki Thallas; Merlin C. Thomas; Riccardo Candido; Wendy C. Burns; Josephine M. Forbes; Anna C. Calkin; Mark E. Cooper; Karin Jandeleit-Dahm

Hyperlipidemia not only may be relevant to cardiovascular disease in diabetes but may also play a role in the development and progression of diabetic nephropathy. Furthermore, there is increasing evidence that advanced glycation end products (AGE) play an important role in diabetic renal disease. The objectives of this study were first to characterize renal injury in diabetic apolipoprotein E knockout (apo E-KO) mice and second to explore the role of AGE in the development and progression of renal disease in this model. Diabetes was induced by injection of streptozotocin in 6-wk-old apo E-KO mice. Diabetic animals received no treatment or treatment with the inhibitor of AGE formation aminoguanidine (1 g/kg per d) or the cross-link breaker [4,5-dimethyl-3-(2-oxo2-phenylethyl)-thiazolium chloride] ALT-711, which cleaves preformed AGE (20 mg/kg per d) for 20 wk. Nondiabetic apo E-KO mice as well as nondiabetic and diabetic C57BL/6 mice served as controls. Compared with nondiabetic apo E-KO mice, induction of diabetes in apo E-KO mice resulted in accelerated renal injury characterized by albuminuria and glomerular and tubulointerstitial injury. These abnormalities were associated with increased expression of collagen type I and type IV and transforming growth factor-beta1 (TGF-beta1), increased alpha-smooth muscle actin immunostaining and macrophage infiltration, and increased serum and renal AGE. The two treatments, which attenuated renal AGE accumulation in a disparate manner, were associated with less albuminuria, structural injury, macrophage infiltration, TGF-beta1, and collagen expression. The accelerated renal injury that was observed in diabetic apo E-KO mice was attenuated by approaches that inhibit renal AGE accumulation.

Collaboration


Dive into the Wendy C. Burns's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zemin Cao

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phillip Kantharidis

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge