Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendy Clarke is active.

Publication


Featured researches published by Wendy Clarke.


Journal of Biological Chemistry | 2003

BMS-345541 Is a Highly Selective Inhibitor of IκB Kinase That Binds at an Allosteric Site of the Enzyme and Blocks NF-κB-dependent Transcription in Mice

James R. Burke; Mark A. Pattoli; Kurt R. Gregor; Patrick J. Brassil; John F. MacMaster; Kim W. McIntyre; Xiaoxia Yang; Violetta Iotzova; Wendy Clarke; Joann Strnad; Yuping Qiu; F. Christopher Zusi

The signal-inducible phosphorylation of serines 32 and 36 of IκBα is critical in regulating the subsequent ubiquitination and proteolysis of IκBα, which then releases NF-κB to promote gene transcription. The multisubunit IκB kinase responsible for this phosphorylation contains two catalytic subunits, termed IκB kinase (IKK)-1 and IKK-2. BMS-345541 (4(2′-aminoethyl)amino-1,8-dimethylimidazo(1,2-a)quinoxaline) was identified as a selective inhibitor of the catalytic subunits of IKK (IKK-2 IC50 = 0.3 μm, IKK-1 IC50 = 4 μm). The compound failed to inhibit a panel of 15 other kinases and selectively inhibited the stimulated phosphorylation of IκBα in cells (IC50 = 4 μm) while failing to affect c-Jun and STAT3 phosphorylation, as well as mitogen-activated protein kinase-activated protein kinase 2 activation in cells. Consistent with the role of IKK/NF-κB in the regulation of cytokine transcription, BMS-345541 inhibited lipopolysaccharide-stimulated tumor necrosis factor α, interleukin-1β, interleukin-8, and interleukin-6 in THP-1 cells with IC50 values in the 1- to 5-μmrange. Although a Dixon plot of the inhibition of IKK-2 by BMS-345541 showed a non-linear relationship indicating non-Michaelis-Menten kinetic binding, the use of multiple inhibition analyses indicated that BMS-345541 binds in a mutually exclusive manner with respect to a peptide inhibitor corresponding to amino acids 26–42 of IκBα with Ser-32 and Ser-36 changed to aspartates and in a non-mutually exclusive manner with respect to ADP. The opposite results were obtained when studying the binding to IKK-1. A binding model is proposed in which BMS-345541 binds to similar allosteric sites on IKK-1 and IKK-2, which then affects the active sites of the subunits differently. BMS-345541 was also shown to have excellent pharmacokinetics in mice, and peroral administration showed the compound to dose-dependently inhibit the production of serum tumor necrosis factor α following intraperitoneal challenge with lipopolysaccharide. Thus, the compound is effective against NF-κB activation in mice and represents an important tool for investigating the role of IKK in disease models.


Journal of Medicinal Chemistry | 2008

Discovery and evaluation of 4-(2-(4-chloro-1H-pyrazol-1-yl)ethylamino)-3-(6-(1-(3-fluoropropyl)piperidin-4-yl)-4-methyl-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one (BMS-695735), an orally efficacious inhibitor of insulin-like growth factor-1 receptor kinase with broad spectrum in vivo antitumor activity.

Upender Velaparthi; Mark D. Wittman; Peiying Liu; Joan M. Carboni; Francis Y. Lee; Ricardo M. Attar; Praveen Balimane; Wendy Clarke; Michael Sinz; Warren Hurlburt; Karishma Patel; Lorell Discenza; Sean Kim; Marco M. Gottardis; Ann Greer; Aixin Li; Mark G. Saulnier; Zheng Yang; Kurt Zimmermann; George L. Trainor; Dolatrai M. Vyas

We previously reported that 1 (BMS-536924), a benzimidazole inhibitor of the insulin-like growth factor-1 receptor, had demonstrated in vivo antitumor activity. This lead compound was found to have potent CYP3A4 inhibition, CYP3A4 induction mediated by PXR transactivation, poor aqueous solubility, and high plasma protein binding. Herein we disclose the evolution of this chemotype to address these issues. This effort led to 10 (BMS-695735), which exhibits improved ADME properties, a low risk for drug-drug interactions, and in vivo efficacy in multiple xenograft models.


Pharmacology, Biochemistry and Behavior | 2005

Neurochemical, pharmacokinetic, and behavioral effects of the novel selective serotonin reuptake inhibitor BMS-505130

Matthew T. Taber; Robert N. Wright; Thaddeus F. Molski; Wendy Clarke; Patrick J. Brassil; Derek J. Denhart; Ronald J. Mattson; Nicholas J. Lodge

BMS-505130 is a potent and selective serotonin transport inhibitor; K(i) for binding to the serotonin transporter = 0.18 nM (K(i) values for binding to the norepinephrine and dopamine transporters = 4.6 and 2.1 microM, respectively). In platelet serotonin uptake studies BMS-505130 (5 mg/kg, p.o.) produced a robust inhibition of serotonin uptake. In microdialysis studies oral dosing with BMS-505130 produced a dose-dependent increase in cortical serotonin levels that reached a maximal effect of 200% above baseline at a dose of 1 mg/kg, p.o.; the peak serotonin response was transient in nature. Following oral administration, peak plasma concentrations of BMS-505130 reached Tmax at 1.6 +/- 0.7 h and then declined to concentrations <10% of Cmax within the following 6 h; plasma half-life following i.v. dosing was 0.46 +/- 0.02 h. Parallel microdialysis and pharmacokinetic studies revealed that changes in serotonin levels in the cortex mirrored changes in the brain concentration of BMS-505130. In a behavioral assay known to be sensitive to selective serotonin reuptake inhibitors (SSRIs), mouse tail suspension, BMS-505130 produced a robust response after either oral or intraperitoneal dosing. BMS-505130 exhibits a pharmacological, neurochemical and behavioral profile consistent with a potent SSRI. Moreover, BMS-505130s short half-life may be advantageous for the treatment of premature ejaculation where an acute effect to delay ejaculation followed by a relatively rapid fall in SSRI plasma concentrations might be desirable.


Bioorganic & Medicinal Chemistry Letters | 2010

Insulin-like growth factor-1 receptor (IGF-1R) kinase inhibitors: SAR of a series of 3-[6-(4-substituted-piperazin-1-yl)-4-methyl-1H-benzimidazol-2-yl]-1H-pyridine-2-one

Upender Velaparthi; Mark G. Saulnier; Mark D. Wittman; Peiying Liu; David B. Frennesson; Kurt Zimmermann; Joan M. Carboni; Marco M. Gottardis; Aixin Li; Ann Greer; Wendy Clarke; Zheng Yang; Krista Menard; Francis Y. Lee; George L. Trainor; Dolatrai M. Vyas

A series of 3-[6-(4-substituted-piperazin-1-yl)-4-methyl-1H-benzimidazol-2-yl]-1H-pyridine-2-one were synthesized to modulate CYP3A4 inhibition and improve aqueous solubility of our prototypical compound BMS-536924 (1), while maintaining potent IGF-1R inhibitory activity. Structure-activity and structure-solubility studies led to the identification of BMS-577098 (27), which demonstrates oral in vivo efficacy in animal models. The improvement was achieved by replacing morpholine with more polar bio-isoster piperazine and modulating the basicity of distal nitrogen with appropriate substitutions.


Journal of Medicinal Chemistry | 2016

Discovery of Isonicotinamides as Highly Selective, Brain Penetrable, and Orally Active Glycogen Synthase Kinase-3 Inhibitors.

Guanglin Luo; Ling Chen; Catherine R. Burton; Hong Xiao; Prasanna Sivaprakasam; Carol M. Krause; Yang Cao; Nengyin Liu; Jonathan Lippy; Wendy Clarke; Kimberly Snow; Joseph Raybon; Vinod Arora; Matt Pokross; Kevin Kish; Hal A. Lewis; David R. Langley; John E. Macor; Gene M. Dubowchik

GSK-3 is a serine/threonine kinase that has numerous substrates. Many of these proteins are involved in the regulation of diverse cellular functions, including metabolism, differentiation, proliferation, and apoptosis. Inhibition of GSK-3 may be useful in treating a number of diseases including Alzheimers disease (AD), type II diabetes, mood disorders, and some cancers, but the approach poses significant challenges. Here, we present a class of isonicotinamides that are potent, highly kinase-selective GSK-3 inhibitors, the members of which demonstrated oral activity in a triple-transgenic mouse model of AD. The remarkably high kinase selectivity and straightforward synthesis of these compounds bode well for their further exploration as tool compounds and therapeutics.


ACS Medicinal Chemistry Letters | 2014

Design and synthesis of 4-heteroaryl 1,2,3,4-tetrahydroisoquinolines as triple reuptake inhibitors.

Shuang Liu; Congxiang Zha; Kassoum Nacro; Min Hu; Wenge Cui; Yuh-Lin Yang; Ulhas Bhatt; Aruna Sambandam; Matthew Isherwood; Larry Yet; Michael Herr; Sarah M. Ebeltoft; Carla Hassler; Linda Fleming; Anthony D. Pechulis; Anne Payen-Fornicola; Nicholas Holman; Dennis Milanowski; Ian C. Cotterill; Vadim V. Mozhaev; Yuri L. Khmelnitsky; Peter R. Guzzo; Bruce J. Sargent; Bruce F. Molino; Richard E. Olson; Dalton King; Snjezana Lelas; Yu-Wen Li; Kim A. Johnson; Thaddeus F. Molski

A series of 4-bicyclic heteroaryl 1,2,3,4-tetrahydroisoquinoline inhibitors of the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT) was discovered. The synthesis and structure-activity relationship (SAR) of these triple reuptake inhibitors (TRIs) will be discussed. Compound 10i (AMR-2), a very potent inhibitor of SERT, NET, and DAT, showed efficacy in the rat forced-swim and mouse tail suspension models with minimum effective doses of 0.3 and 1 mg/kg (po), respectively. At efficacious doses in these assays, 10i exhibited substantial occupancy levels at the three transporters in both rat and mouse brain. The study of the metabolism of 10i revealed the formation of a significant active metabolite, compound 13.


ACS Medicinal Chemistry Letters | 2017

BMS-933043, a Selective α7 nAChR Partial Agonist for the Treatment of Cognitive Deficits Associated with Schizophrenia

Dalton King; Christiana I. Iwuagwu; Jim Cook; Ivar M. McDonald; Robert A. Mate; F. Christopher Zusi; Matthew D. Hill; Haiquan Fang; Rulin Zhao; Bei Wang; Amy Easton; Regina Miller; Debra J. Post-Munson; Ronald J. Knox; Lizbeth Gallagher; Ryan Westphal; Thaddeus F. Molski; Jingsong Fan; Wendy Clarke; Yulia Benitex; Kimberley A. Lentz; Rex Denton; Daniel J. Morgan; Robert Zaczek; Nicholas J. Lodge; Linda J. Bristow; John E. Macor; Richard E. Olson

The therapeutic treatment of negative symptoms and cognitive dysfunction associated with schizophrenia is a significant unmet medical need. Preclinical literature indicates that α7 neuronal nicotinic acetylcholine (nACh) receptor agonists may provide an effective approach to treating cognitive dysfunction in schizophrenia. We report herein the discovery and evaluation of 1c (BMS-933043), a novel and potent α7 nACh receptor partial agonist with high selectivity against other nicotinic acetylcholine receptor subtypes (>100-fold) and the 5-HT3A receptor (>300-fold). In vivo activity was demonstrated in a preclinical model of cognitive impairment, mouse novel object recognition. BMS-933043 has completed Phase I clinical trials.


ACS Medicinal Chemistry Letters | 2012

Discovery of a Novel Class of Bicyclo[3.1.0]hexanylpiperazines as Noncompetitive Neuropeptide Y Y1 Antagonists.

Shuanghua Hu; Yazhong Huang; Milind Deshpande; Guanglin Luo; Marc Bruce; Ling Chen; Gail K. Mattson; Lawrence G. Iben; Jie Zhang; John W. Russell; Wendy Clarke; John B. Hogan; Astrid Ortiz; Oliver Flint; Andrew Henwood; Qi Gao; Ildiko Antal-Zimanyi; Graham S. Poindexter

A novel class of bicyclo[3.1.0]hexanylpiperazine neuropeptide Y (NPY) Y1 antagonists has been designed and synthesized. Scatchard binding analysis showed these compounds to be noncompetitive with [(125)I]PYY binding to the Y1 receptor. The most potent member, 1-((1α,3α,5α,6β)-6-(3-ethoxyphenyl)-3-methylbicyclo[3.1.0]hexan-6-yl)-4-phenylpiperazine (2) had an IC50 = 62 nM and displayed excellent oral bioavailability in rat (% F po = 80), as well as good brain penetration (B/P ratio = 0.61). In a spontaneous nocturnal feeding study with male Sprague-Dawley rats, 2 significantly reduced food intake during a 12 h period.


Bioorganic & Medicinal Chemistry Letters | 2013

Heterocyclic modification of a novel bicyclo[3.1.0]hexane NPY1 receptor antagonist.

Guanglin Luo; Ling Chen; Shuanghua Hu; Yazhong Huang; Gail K. Mattson; Lawrence G. Iben; John W. Russell; Wendy Clarke; John B. Hogan; Ildiko Antal-Zimanyi; Graham S. Poindexter

A convergent synthesis route for the heterocyclic modification of a novel bicyclo[3.1.0]hexane NPY1 antagonist 2 was developed and the structure activity relationship of these modifications on NPY1 binding is reported. Two heterocyclic analogs 9 and 10 showed comparable Y1 binding potency to 2, but with improved aqueous solubility. Compound 9 demonstrated reduced spontaneous nocturnal food intake in a rat model when dosed ip. Compound 9 was also shown to be orally bioavailable and brain penetrable.


Journal of Medicinal Chemistry | 2005

Discovery of a (1H-benzoimidazol-2-yl)-1H-pyridin-2-one (BMS-536924) inhibitor of insulin-like growth factor I receptor kinase with in vivo antitumor activity.

Mark D. Wittman; Joan M. Carboni; Ricardo M. Attar; Balu Balasubramanian; Praveen Balimane; Patrick Brassil; Francis Beaulieu; Chiehying Chang; Wendy Clarke; Janet Dell; Jeffrey Eummer; David B. Frennesson; Marco M. Gottardis; Ann Greer; Steven Hansel; Warren Hurlburt; Bruce L. Jacobson; Subramaniam Krishnananthan; Francis Y. Lee; Aixin Li; Tai-An Lin; Peiying Liu; Carl Ouellet; Xiaopeng Sang; Mark G. Saulnier; Karen Stoffan; Yax Sun; Upender Velaparthi; Henry Wong; Zheng Yang

Collaboration


Dive into the Wendy Clarke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge