Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendy Lai is active.

Publication


Featured researches published by Wendy Lai.


Nature | 2013

The TLR4 Antagonist, Eritoran, Protects Mice from Lethal Influenza Infection

Kari Ann Shirey; Wendy Lai; Alison J. Scott; Michael M. Lipsky; Pragnesh Mistry; Lioubov M. Pletneva; Christopher L. Karp; Jaclyn W. McAlees; Theresa L. Gioannini; Jerrold Weiss; Wilbur H. Chen; Robert K. Ernst; Daniel P. Rossignol; Fabian Gusovsky; Jorge Blanco; Stefanie N. Vogel

There is a pressing need to develop alternatives to annual influenza vaccines and antiviral agents licensed for mitigating influenza infection. Previous studies reported that acute lung injury caused by chemical or microbial insults is secondary to the generation of host-derived, oxidized phospholipid that potently stimulates Toll-like receptor 4 (TLR4)-dependent inflammation. Subsequently, we reported that Tlr4−/− mice are highly refractory to influenza-induced lethality, and proposed that therapeutic antagonism of TLR4 signalling would protect against influenza-induced acute lung injury. Here we report that therapeutic administration of Eritoran (also known as E5564)—a potent, well-tolerated, synthetic TLR4 antagonist—blocks influenza-induced lethality in mice, as well as lung pathology, clinical symptoms, cytokine and oxidized phospholipid expression, and decreases viral titres. CD14 and TLR2 are also required for Eritoran-mediated protection, and CD14 directly binds Eritoran and inhibits ligand binding to MD2. Thus, Eritoran blockade of TLR signalling represents a novel therapeutic approach for inflammation associated with influenza, and possibly other infections.


Journal of Biological Chemistry | 2012

5,6-Dimethylxanthenone-4-acetic Acid (DMXAA) Activates Stimulator of Interferon Gene (STING)-dependent Innate Immune Pathways and Is Regulated by Mitochondrial Membrane Potential

Daniel Prantner; Darren J. Perkins; Wendy Lai; Mark S. Williams; Shruti Sharma; Katherine A. Fitzgerald; Stefanie N. Vogel

Background: 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) activates intracellular signaling through uncharacterized pathways similar to those engaged by bacterial pathogens. Results: Mitochondrial targeting agents and absence of STING impair the response to DMXAA in mouse macrophages. Conclusion: Mitochondrial membrane potential is required for optimal response to DMXAA. Significance: This study illustrates that mitochondrial physiology is pivotal in the host response to DMXAA and possibly bacterial pathogens. The chemotherapeutic agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) is a potent inducer of type I IFNs and other cytokines. This ability is essential for its chemotherapeutic benefit in a mouse cancer model and suggests that it might also be useful as an antiviral agent. However, the mechanism underlying DMXAA-induced type I IFNs, including the host proteins involved, remains unclear. Recently, it was reported that the antioxidant N-acetylcysteine (NAC) decreased DMXAA-induced TNF-α and IL-6, suggesting that oxidative stress may play a role. The goal of this study was to identify host proteins involved in DMXAA-dependent signaling and determine how antioxidants modulate this response. We found that expression of IFN-β in response to DMXAA in mouse macrophages requires the mitochondrial and endoplasmic reticulum resident protein STING. Addition of the antioxidant diphenylene iodonium (DPI) diminished DMXAA-induced IFN-β, but this decrease was independent of both the NADPH oxidase, Nox2, and de novo generation of reactive oxygen species. Additionally, IFN-β up-regulation by DMXAA was inhibited by agents that target the mitochondrial electron transport chain and, conversely, loss of mitochondrial membrane potential correlated with diminished innate immune signaling in response to DMXAA. Up-regulation of Ifnb1 gene expression mediated by cyclic dinucleotides was also impaired by DPI, whereas up-regulation of Ifnb1 mRNA due to cytosolic double-stranded DNA was not. Although both stimuli signal through STING, cyclic dinucleotides interact directly with STING, suggesting that recognition of DMXAA by STING may also be mediated by direct interaction.


Journal of Immunology | 2011

Transcriptional Control of Rapid Recall by Memory CD4 T Cells

Wendy Lai; Minjun Yu; Min-Nung Huang; Francesca I. Okoye; Achsah D. Keegan; Donna L. Farber

Memory T cells are distinguished from naive T cells by their rapid production of effector cytokines, although mechanisms for this recall response remain undefined. In this study, we investigated transcriptional mechanisms for rapid IFN-γ production by Ag-specific memory CD4 T cells. In naive CD4 T cells, IFN-γ production only occurred after sustained Ag activation and was associated with high expression of the T-bet transcription factor required for Th1 differentiation and with T-bet binding to the IFN-γ promoter as assessed by chromatin immunoprecipitation analysis. By contrast, immediate IFN-γ production by Ag-stimulated memory CD4 T cells occurred in the absence of significant nuclear T-bet expression or T-bet engagement on the IFN-γ promoter. We identified rapid induction of NF-κB transcriptional activity and increased engagement of NF-κB on the IFN-γ promoter at rapid times after TCR stimulation of memory compared with naive CD4 T cells. Moreover, pharmacologic inhibition of NF-κB activity or peptide-mediated inhibition of NF-κB p50 translocation abrogated early memory T cell signaling and TCR-mediated effector function. Our results reveal a molecular mechanism for memory T cell recall through enhanced NF-κB p50 activation and promoter engagement, with important implications for memory T cell modulation in vaccines, autoimmunity, and transplantation.


Mucosal Immunology | 2014

Role of the lipoxygenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology

Kari Ann Shirey; Wendy Lai; Lioubov M. Pletneva; Christopher L. Karp; Senad Divanovic; Jorge Blanco; Stefanie N. Vogel

Resolution of severe Respiratory Syncytial Virus (RSV)-induced bronchiolitis is mediated by alternatively activated macrophages (AA-Mφ) that counteract cyclooxygenase (COX)-2-induced lung pathology. Herein, we report that RSV infection of 5-lipoxygenase (LO)−/− and 15-LO−/− macrophages or mice failed to elicit AA-Mφ differentiation and concomitantly exhibited increased COX-2 expression. Further, RSV infection of 5-LO−/− mice resulted in enhanced lung pathology. Pharmacologic inhibition of 5-LO or 15-LO also blocked differentiation of RSV-induced AA-Mφ in vitro and, conversely, treatment of 5-LO−/− macrophages with downstream products, lipoxin A4 and resolvin E1, but not leukotriene B4 or leukotriene D4, partially restored expression of AA-Mφ markers. Indomethacin blockade of COX activity in RSV-infected macrophages increased 5-LO and 15-LO, as well as arginase-1 mRNA expression. Treatment of RSV-infected mice with indomethacin also resulted not only in enhanced lung arginase-1 mRNA expression and decreased COX-2, but also decreased lung pathology in RSV-infected 5-LO−/− mice. Treatment of RSV-infected cotton rats with a COX-2-specific inhibitor resulted in enhanced lung 5-LO mRNA and AA-Mφ marker expression. Together, these data suggest a novel therapeutic approach for RSV that promotes AA-Mφ differentiation by activating the 5-LO pathway.


PLOS Pathogens | 2013

Reprogramming of murine macrophages through TLR2 confers viral resistance via TRAF3-mediated, enhanced interferon production.

Darren J. Perkins; Swamy K. Polumuri; Meghan E. Pennini; Wendy Lai; Ping Xie; Stefanie N. Vogel

The cell surface/endosomal Toll-like Receptors (TLRs) are instrumental in initiating immune responses to both bacteria and viruses. With the exception of TLR2, all TLRs and cytosolic RIG-I-like receptors (RLRs) with known virus-derived ligands induce type I interferons (IFNs) in macrophages or dendritic cells. Herein, we report that prior ligation of TLR2, an event previously shown to induce “homo” or “hetero” tolerance, strongly “primes” macrophages for increased Type I IFN production in response to subsequent TLR/RLR signaling. This occurs by increasing activation of the transcription factor, IFN Regulatory Factor-3 (IRF-3) that, in turn, leads to enhanced induction of IFN-β, while expression of other pro-inflammatory genes are suppressed (tolerized). In vitro or in vivo “priming” of murine macrophages with TLR2 ligands increase virus-mediated IFN induction and resistance to infection. This priming effect of TLR2 is mediated by the selective upregulation of the K63 ubiquitin ligase, TRAF3. Thus, we provide a mechanistic explanation for the observed antiviral actions of MyD88-dependent TLR2 and further define the role of TRAF3 in viral innate immunity.


Cell Reports | 2015

A Decoy Peptide that Disrupts TIRAP Recruitment to TLRs Is Protective in a Murine Model of Influenza

Wenji Piao; Kari Ann Shirey; Lisa W. Ru; Wendy Lai; Henryk Szmacinski; Greg A. Snyder; Eric J. Sundberg; Joseph R. Lakowicz; Stefanie N. Vogel; Vladimir Y. Toshchakov

Toll-like receptors (TLRs) activate distinct, yet overlapping sets of signaling molecules, leading to inflammatory responses to pathogens. Toll/interleukin-1 receptor (TIR) domains, present in all TLRs and TLR adapters, mediate protein interactions downstream of activated TLRs. A peptide library derived from TLR2 TIR was screened for inhibition of TLR2 signaling. Cell-permeable peptides derived from the D helix and the segment immediately N-terminal to the TLR2 TIR domain potently inhibited TLR2-mediated cytokine production. The D-helix peptide, 2R9, also potently inhibited TLR4, TLR7, and TLR9, but not TLR3 or TNF-α signaling. Cell imaging, co-immunoprecipitation, and in vitro studies demonstrated that 2R9 preferentially targets TIRAP. 2R9 diminished systemic cytokine responses elicited in vivo by synthetic TLR2 and TLR7 agonists; it inhibited the activation of macrophages infected with influenza strain A/PR/8/34 (PR8) and significantly improved the survival of PR8-infected mice. Thus, 2R9 represents a TLR-targeting agent that blocks protein interactions downstream of activated TLRs.


Journal of Leukocyte Biology | 2014

Agents that increase AAM differentiation blunt RSV-mediated lung pathology

Kari Ann Shirey; Wendy Lai; Lioubov M. Pletneva; Fred D. Finkelman; David J. Feola; Jorge Blanco; Stefanie N. Vogel

RSV is the most significant cause of serious lower respiratory tract infection in infants and young children worldwide. There is currently no vaccine for the virus, and antiviral therapy (e.g., ribavirin) has shown no efficacy against the disease. We reported that alternatively activated macrophages (AAMs) mediate resolution of RSV‐induced pathology. AAM differentiation requires macrophage‐derived IL‐4 and ‐13, autocrine/paracrine signaling through the type I IL‐4 receptor, and STAT6 activation. Based on these findings, we reasoned that it would be possible to intervene therapeutically in RSV disease by increasing AAM differentiation, thereby decreasing lung pathology. Mice treated with the IL‐4/anti‐IL‐4 immune complexes, shown previously to sustain levels of circulating IL‐4, increased the RSV‐induced AAM markers arginase‐1 and mannose receptor and decreased the lung pathology. Induction of PPARγ, shown to play a role in AAM development, by the PPARγ agonist rosiglitazone or treatment of mice with the macrolide antibiotic AZM, also reported to skew macrophage differentiation to an AAM phenotype, increased the AAM markers and mitigated RSV‐induced lung pathology. Collectively, our data suggest that therapeutic manipulation of macrophage differentiation to enhance the AAM phenotype is a viable approach for ameliorating RSV‐induced disease.


Nature Immunology | 2018

Autocrine–paracrine prostaglandin E2 signaling restricts TLR4 internalization and TRIF signaling

Darren J. Perkins; Katharina Richard; Anne-Marie Hansen; Wendy Lai; Shreeram Nallar; Beverly H. Koller; Stefanie N. Vogel

The unique cell biology of Toll-like receptor 4 (TLR4) allows it to initiate two signal-transduction cascades: a signal dependent on the adaptors TIRAP (Mal) and MyD88 that begins at the cell surface and regulates proinflammatory cytokines, and a signal dependent on the adaptors TRAM and TRIF that begins in the endosomes and drives the production of type I interferons. Negative feedback circuits to limit TLR4 signals from both locations are necessary to balance the inflammatory response. We describe a negative feedback loop driven by autocrine–paracrine prostaglandin E2 (PGE2) and the PGE2 receptor EP4 that restricted TRIF-dependent signals and the induction of interferon-β through the regulation of TLR4 trafficking. Inhibition of PGE2 production or antagonism of EP4 increased the rate at which TLR4 translocated to endosomes and amplified TRIF-dependent activation of the transcription factor IRF3 and caspase-8. This PGE2-driven mechanism restricted TLR4–TRIF signaling in vitro after infection of macrophages by the Gram-negative pathogens Escherichia coli or Citrobacter rodentium and protected mice against mortality induced by Salmonella enteritidis serovar Typhimurium. Thus, PGE2 restricted TLR4–TRIF signaling specifically in response to lipopolysaccharide.Endosomal TLR4 signaling activates type I interferons via a TRIF-dependent pathway. Vogel and colleagues identify autocrine production of PGE2–EP4–cAMP as a negative regulator of the TRIF pathway that suppresses IFN-β expression induced by Gram-negative bacteria.


Mucosal Immunology | 2018

Novel role of gastric releasing peptide-mediated signaling in the host response to influenza infection

Kari Ann Shirey; Mary E. Sunday; Wendy Lai; Mira C. Patel; Jorge Blanco; Frank Cuttitta; Stefanie N. Vogel

Gastrin-releasing peptide (GRP) is an evolutionarily well-conserved neuropeptide that was originally recognized for its ability to mediate gastric acid secretion in the gut. More recently, however, GRP has been implicated in pulmonary lung inflammatory diseases including bronchopulmonary dysplasia, chronic obstructive pulmonary disease, emphysema, and others. Antagonizing GRP or its receptor mitigated lethality associated with the onset of viral pneumonia in a well-characterized mouse model of influenza. In mice treated therapeutically with the small-molecule GRP inhibitor, NSC77427, increased survival was accompanied by decreased numbers of GRP-producing pulmonary neuroendocrine cells, improved lung histopathology, and suppressed cytokine gene expression. In addition, in vitro studies in macrophages indicate that GRP synergizes with the prototype TLR4 agonist, lipopolysaccharide, to induce cytokine gene expression. Thus, these findings reveal that GRP is a previously unidentified mediator of influenza-induced inflammatory disease that is a potentially novel target for therapeutic intervention.


Journal of Leukocyte Biology | 2017

The θ-defensin retrocyclin 101 inhibits TLR4- and TLR2-dependent signaling and protects mice against influenza infection

Daniel Prantner; Kari Ann Shirey; Wendy Lai; Wuyuan Lu; Alexander M. Cole; Stefanie N. Vogel; Alfredo Garzino-Demo

Despite widespread use of annual influenza vaccines, seasonal influenza‐associated deaths number in the thousands each year, in part because of exacerbating bacterial superinfections. Therefore, discovering additional therapeutic options would be a valuable aid to public health. Recently, TLR4 inhibition has emerged as a possible mechanism for protection against influenza‐associated lethality and acute lung injury. Based on recent data showing that rhesus macaque θ‐defensins could inhibit TLR4‐dependent gene expression, we tested the hypothesis that a novel θ‐defensin, retrocyclin (RC)‐101, could disrupt TLR4‐dependent signaling and protect against viral infection. In this study, RC‐101, a variant of the humanized θ‐defensin RC‐1, blocked TLR4‐mediated gene expression in mouse and human macrophages in response to LPS, targeting both MyD88‐ and TRIF‐dependent pathways. In a cell‐free assay, RC‐101 neutralized the biologic activity of LPS at doses ranging from 0.5 to 50 EU/ml, consistent with data showing that RC‐101 binds biotinylated LPS. The action of RC‐101 was not limited to the TLR4 pathway because RC‐101 treatment of macrophages also inhibited gene expression in response to a TLR2 agonist, Pam3CSK4, but failed to bind that biotinylated agonist. Mouse macrophages infected in vitro with mouse‐adapted A/PR/8/34 influenza A virus (PR8) also produced lower levels of proinflammatory cytokine gene products in a TLR4‐independent fashion when treated with RC‐101. Finally, RC‐101 decreased both the lethality and clinical severity associated with PR8 infection in mice. Cumulatively, our data demonstrate that RC‐101 exhibits therapeutic potential for the mitigation of influenza‐related morbidity and mortality, potentially acting through TLR‐dependent and TLR‐independent mechanisms.

Collaboration


Dive into the Wendy Lai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge Blanco

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander M. Cole

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge