Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenfang Dou is active.

Publication


Featured researches published by Wenfang Dou.


Journal of Ethnopharmacology | 2009

Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases.

Zong-Hua Ao; Zhenghong Xu; Zhen-Ming Lu; Hongyu Xu; Xiaomei Zhang; Wenfang Dou

Niuchangchih (Antrodia camphorata (M. Zang & C.H. Su) Sheng H. Wu, Ryvarden & T.T. Chang) is a basidiomycete endemic to Taiwan. It is well known as a Traditional Chinese Medicine (TCM), and Taiwanese aborigines used this species to treat liver diseases and food and drug intoxication. The compounds identified in Niuchangchih are predominantly polysaccharides, triterpenoids, steroids, benzenoids and maleic/succinic acid derivatives. Recent research has revealed that Niuchangchih possesses extensive biological activity, such as hepatoprotective, antihypertensive, anti-hyperlipidemic, immuno-modulatory, anticancer, anti-inflammatory and antioxidant activities. The fruiting bodies and fermented products of Niuchangchih have been reported to exhibit activity when treating liver diseases, such as preventing ethanol-, CCl(4)- and cytokine-induced liver injury, inhibiting the hepatitis B virus, ameliorating fatty liver and liver fibrosis, and inhibiting liver cancer cells. This review will address the protective effects of Niuchangchih on the pathological development of liver diseases, and the underlying mechanisms of action are also discussed.


Protein Expression and Purification | 2008

Expression, purification, and characterization of recombinant human serum albumin fusion protein with two human glucagon-like peptide-1 mutants in Pichia pastoris

Wenfang Dou; Jianyong Lei; Lianfen Zhang; Zhenghong Xu; Yun Chen; Jian Jin

Glucagon-like peptide-1 (GLP-1) is a 30-residue peptide hormone secreted by intestinal L-cells in response to nutrient ingestion. In the present study, overlapping PCR technology was employed to construct two GLP-1 mutants (GLP-1(A2G))2 and human albumin (HSA) genes in vitro without linker. The spliced gene, (GLP-1(A2G))2-HSA, was over expressed under the control of promoter AOX1 and Mat alpha signal peptide in Pichia pastoris. SDS-PAGE and Western blotting were applied to assay the recombinant fusion protein in the culture broth. The results demonstrated that the recombinant (GLP-1(A2G))2-HSA concentration in the broth could reach a level of 245.0 mg/L and the expressed fusion protein was capable of cross-reacting with anti-human GLP-1 and anti-human albumin antibody. The recombinant (GLP-1(A2G))2-HSA protein was purified by ultrafiltration, columns of Q-sepharose fast flow and Superdex 75 size-exclusion. The recombinant (GLP-1(A2G))2-HSA protein obtained could lower in vivo glucose concentration in blood and stimulate in vitro islet cell proliferation. In mouse model, the fusion protein was detectable in plasma even 308 h after a single subcutaneous dose of 1.25 mg/kg. The result showed that the terminal biological half-time of the protein was about 54.2 h which is 650-fold longer than that of GLP-1. The pharmacokinetic analysis of the protein suggests its promising application in clinical medicine.


Carbohydrate Polymers | 2013

Purification and characterisation of a bifunctional alginate lyase from novel Isoptericola halotolerans CGMCC 5336

Wenfang Dou; Dan Wei; Hui Li; Heng Li; Muhammad Masfiqur Rahman; Jinsong Shi; Zhenghong Xu; Yanhe Ma

A novel halophilic alginate-degrading microorganism was isolated from rotten seaweed and identified as Isoptericola halotolerans CGMCC5336. The lyase from the strain was purified to homogeneity by combining of ammonium sulfate fractionation and anion-exchange chromatography with a specific activity of 8409.19 U/ml and a recovery of 25.07%. This enzyme was a monomer with a molecular mass of approximately 28 kDa. The optimal temperature and pH were 50 °C and pH 7.0, respectively. The lyase maintained stability at neutral pH (7.0-8.0) and temperatures below 50 °C. Metal ions including Na(+), Mg(2+), Mn(2+), and Ca(2+) notably increased the activity of the enzyme. With sodium alginate as the substrate, the Km and Vmax were 0.26 mg/ml and 1.31 mg/ml min, respectively. The alginate lyase had substrate specificity for polyguluronate and polymannuronate units in alginate molecules, indicating its bifunctionality. These excellent characteristics demonstrated the potential applications in alginate oligosaccharides production with low polymerisation degrees.


Current Microbiology | 2012

Site-directed mutagenesis studies on the L-arginine-binding sites of feedback inhibition in N-acetyl-L-glutamate kinase (NAGK) from Corynebacterium glutamicum.

Meijuan Xu; Zhiming Rao; Wenfang Dou; Jian Jin; Zhenghong Xu

Arginine biosynthesis in Corynebacterium glutamicum proceeds via a pathway that is controlled by arginine through feedback inhibition of NAGK, the enzyme that converts N-acetyl-l-glutamate (NAG) to N-acety-l-glutamy-l-phosphate. In this study, the gene argB encoding NAGK from C. glutamicum ATCC 13032 was site-directed, and the l-arginine-binding sites of feedback inhibition in Cglu_NAGK are described. The N-helix and C-terminal residues were first deleted, and the results indicated that they are both necessary for Cglu_NAGK, whereas, the complete N-helix deletion (the front 28 residues) abolished the l-arginine inhibition. Further, we study here the impact on these functions of 12 site-directed mutations affecting seven residues of Cglu_NAGK, chosen on the basis of homology structural alignment. The E19R, H26E, and H268N variants could increase the I0.5R 50–60 fold, and the G287D and R209A mutants could increase the I0.5R 30–40 fold. The E281A mutagenesis resulted in the substrate kinetics being greatly influenced. The W23A variant had a lower specific enzyme activity. These results explained that the five amino acid residues (E19, H26, R209, H268, and G287) located in or near N-helix are all essential for the formation of arginine inhibition.


Applied Biochemistry and Biotechnology | 2014

Effect of cofactor folate on the growth of Corynebacterium glutamicum SYPS-062 and L-serine accumulation.

Xiaomei Zhang; Guoqiang Xu; Hui Li; Wenfang Dou; Zhenghong Xu

The direct fermentative production of l-serine from sugar has attracted increasing attention. Corynebacterium glutamicum SYPS-062 can directly convert sugar to l-serine. In this study, the effects of exogenous and endogenous regulation of cofactor folate on C. glutamicum SYPS-062 growth and l-serine accumulation were investigated. For exogenous regulation, the inhibitor (sulfamethoxazole) or precursor (p-aminobenzoate) of folate biosynthesis was added to the medium, respectively. For endogenous regulation, the gene (pabAB) that encodes the key enzyme of folate biosynthesis was knocked out or overexpressed to obtain the recombinant C. glutamicum SYPS-062 ΔpabAB and SYPS-062(pJC-tac-pabAB), respectively. The results indicated that decreased levels of cofactor folate supported l-serine accumulation, whereas increased levels of cofactor folate aided in cell growth of C. glutamicum SYPS-062. Thus, this study not only elucidated the role of folate in C. glutamicum SYPS-062 growth and l-serine accumulation, but also provided a novel and convenient approach to regulate folate biosynthesis in C. glutamicum.


Natural Product Research | 2010

Beneficial effects of the ethanol extract from the dry matter of a culture broth of Inonotus obliquus in submerged culture on the antioxidant defence system and regeneration of pancreatic β-cells in experimental diabetes in mice.

Hongyu Xu; Jun-En Sun; Zhen-Ming Lu; Xiaomei Zhang; Wenfang Dou; Zhenghong Xu

The antihyperglycaemic and antilipidperoxidative effects of the ethanol extract from the dry matter of a culture broth (DMCB) of Inonotus obliquus were investigated in alloxan-induced diabetic mice and the possible mechanism of action was also discussed. In alloxan-induced diabetic mice, treatment with the ethanol extract from DMCB of I. obliquus (30 and 60 mg kg−1 body weight (b.w.) for 21 days) showed a significant decrease in blood glucose level: the percentage reductions on the 7th day were 11.54 and 11.15%, respectively. However, feeding of this drug for three weeks produced reduction of 22.51 and 24.32%. Furthermore, the ethanol extract from the DMCB of I. obliquus treatment significantly decreased serum contents of free fatty acids, total cholesterol, triglycerides and low-density lipoprotein-cholesterol, whereas it effectively increased high-density lipoprotein-cholesterol, insulin levels and hepatic glycogen contents in livers of diabetic mice. Besides this, the ethanol extracts from the DMCB treatment significantly increased catalase, superoxide dismutase and glutathione peroxidase activities, except for decreasing the maleic dialdehyde level in diabetic mice. Histological morphology examination showed that the ethanol extract from the DMCB of I. obliquus restored the damage of pancreatic tissues in mice with diabetes mellitus. The results showed that the ethanol extract from the DMCB of I. obliquus possesses significant antihyperglycaemic, antilipidperoxidative and antioxidant effects in alloxan-induced diabetic mice.


International Journal of Biological Macromolecules | 2016

Biochemical characterization of a novel surfactant-stable serine keratinase with no collagenase activity from Brevibacillus parabrevis CGMCC 10798

Rong-Xian Zhang; Jin-Song Gong; Chang Su; Dandan Zhang; Hua Tian; Wenfang Dou; Heng Li; Jinsong Shi; Zhenghong Xu

Dehairing is a high pollution process in leather industry. Conventionally, the lime-sulfide mediated chemical process for dehairing would lead to the discharge of pollutants and corrosion of industrial equipment. Concerning these problems, keratinase has become a promising candidate for dehairing process in recent years. In this study, a keratinase-producing bacterium was isolated from sheepfold soil and identified as Brevibacillus parabrevis CGMCC 10798 based on the biochemical characteristics and molecular identification. The keratinase was purified to electrophoretic homogeneity with 17.19% of recovery, 13.18 folds of purification and an estimated molecular weight of 28kDa. The enzyme exhibited high keratinase activity and no collagenase activity. Besides, the keratinase showed optimal activity at 60°C and pH 8.0. The enzyme activity could be significantly increased in the presence of Na+ and Ca2+. And it was inhibited by EDTA, and PMSF, which indicated that the keratinase belongs to serine-metallo protease. The enzyme could remain stable in the presence of surfactants. Especially, 5mM Tween 40 and Triton 100 could improve the activity by 11% and 30%, respectively. Moreover, B. parabrevis keratinase could completely dehair goat wool within 7h, which indicated its application potential in leather industry.


International Journal of Biological Macromolecules | 2017

A novel alkaline surfactant-stable keratinase with superior feather-degrading potential based on library screening strategy.

Chang Su; Jin-Song Gong; Rong-Xian Zhang; Li-Yan Tao; Wenfang Dou; Dandan Zhang; Heng Li; Zhen-Ming Lu; Zhenghong Xu; Jinsong Shi

A novel keratinase was mined and expressed in Escherichia coli BL21 (DE3) via function-driven screening with fosmid library. The catalytic properties of purified keratinase were investigated in detail following enzyme purification. The recombinant keratinase was purified to homogeneity with an estimated molecular weight of 26kDa using nickel affinity chromatography, of which the optimal reaction pH and temperature were 10.0 and 55°C, respectively. It could remain stable at pH 5.0-12.0 and 40-60°C. Metal ions such as Ca2+, Mn2+, Ag+, Na+, Mg2+, Li+, Sn2+ (1mM) displayed positive influence on keratinase, and particularly, Ca2+ exhibited remarkable improvement effect by 2.6 folds. It was strongly inhibited by PMSF as a protease inhibitor. On the contrary, it could be obviously activated by various surfactants, such as Tween 40 and Triton X-114. The recombinant keratinase showed high specificity towards casein, soluble keratin, BSA, and wool. The keratinase could efficiently degrade the feathers, which demonstrated its applicable potential for biodegradation of keratin wastes and regeneration of soluble protein.


Chemical Papers | 2016

Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry

Rong-Xian Zhang; Jin-Song Gong; Wenfang Dou; Dandan Zhang; Yu-Xia Zhang; Heng Li; Zhen-Ming Lu; Jinsong Shi; Zhenghong Xu

Surfactant-stable keratinases with good properties are promising candidates for extensive applications in detergent industries. A novel fungal keratinase-producing strain, Gibberella intermedia CA3-1, is described in this study. The keratinase production medium was optimized and composed of 10 g L−1 of wool powder, 5 g L−1 of tryptone, 10 g L−1 of maltodextrin and 0.5 g L−1 of NaCl. Keratinase activity was increased up to 109 U mL−1 from 15 U mL−1 by culture optimization. The optimal reaction pH and temperature of the enzyme were 9.0 and 60°C, respectively. The keratinase activity could be improved by sodium dodecyl sulphate (SDS), and it remained stable in the presence of several surfactants and commercial detergents. G. intermedia keratinase was proved to completely remove blood stains from cotton cloth when combined with detergents. These findings indicate that this fungal keratinase is a promising catalyst for the application in detergent industry. To our knowledge, this is the first report on keratinase production by Gibberella genus.


Biotechnology and Bioprocess Engineering | 2013

Improvement of the steroid dihydroxylation efficiency from dehydroepiandrosterone using a substrate pre-induction biotransformation process

Hui Li; Zhenzhen Fu; Heng Li; Wenfang Dou; Jinsong Shi; Zhenghong Xu

This study investigated the effects of hydroxylase cyptochrome P450 inducers on the efficiency of the biotransformation of dehydroepiandrosterone (DHEA) to 3β, 7α, 15α-trihydroxy-5-androsten-17-one (7α,15α-diOHDHEA) by Colletotrichum lini ST-1. Special attention was given to the substrate DHEA being the best inducer and the fact that it could improve the yield of 7α, 15α-diOHDHEA. Based on the effects of the DHEA pre-induction phases and additional concentrations on 7α, 15α-diOHDHEA production, a substrate pre-induction process was established as follows: 2 g/L DHEA was added for the first time after 12 h of inoculation, followed by the second addition of 6 g/L DHEA after 12 h later. The results showed that this substrate pre-induction process improved the content of cytochrome P450 and that the 7α, 15α-diOH-DHEA yield reached 90.1%, which was 26.9% higher than that obtained in the original process.

Collaboration


Dive into the Wenfang Dou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge