Jin-Song Gong
Jiangnan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jin-Song Gong.
Microbial Cell Factories | 2012
Jin-Song Gong; Zhen-Ming Lu; Heng Li; Jinsong Shi; Zhemin Zhou; Zhenghong Xu
Over the past decades, nitrilases have drawn considerable attention because of their application in nitrile degradation as prominent biocatalysts. Nitrilases are derived from bacteria, filamentous fungi, yeasts, and plants. In-depth investigations on their natural sources function mechanisms, enzyme structure, screening pathways, and biocatalytic properties have been conducted. Moreover, the immobilization, purification, gene cloning and modifications of nitrilase have been dwelt upon. Some nitrilases are used commercially as biofactories for carboxylic acids production, waste treatment, and surface modification. This critical review summarizes the current status of nitrilase research, and discusses a number of challenges and significant attempts in its further development. Nitrilase is a significant and promising biocatalyst for catalytic applications.
Journal of Basic Microbiology | 2013
Yan Wu; Jin-Song Gong; Zhen-Ming Lu; Heng Li; Xiao-Yan Zhu; Hui Li; Jing-Song Shi; Zhenghong Xu
Nitrilase‐mediated biocatalysis has attracted substantial attention for its application in carboxylic acid production in recent years. In the present study, the fungus CA3‐1 was isolated and identified as Gibberella intermedia based on its morphology, its 18S ribosomal DNA (rDNA), and internal transcribed spacer (ITS) sequences. The enzymatic properties of G. intermedia resting cells were determined, and the optimum activity was achieved at 40 °C with pH 7.6. The half‐lives of the nitrilase at 30, 40, and 50 °C were 231.1, 72.9, and 6.4 h, respectively. This Gibberella nitrilase showed a wide substrate spectrum with high specificity for heterocyclic and aliphatic nitriles. It remained extremely active in 5% propanol. The presence of Ag+, Hg2+, and excess substrate inhibited the nitrilase activity, whereas Fe2+, Mn2+, and Li+ improved enzyme activity. 3‐Cyanopyridine (50 mM) was hydrolyzed into nicotinic acid within 30 min, whereas only <5% of nicotinamide was detected. The results show that this fungal nitrilase is a promising candidate for commercial application in nicotinic acid production.
PLOS ONE | 2012
Jin-Song Gong; Heng Li; Xiao-Yan Zhu; Zhen-Ming Lu; Yan Wu; Jing-Song Shi; Zhenghong Xu
Background Nitrilase is an important member of the nitrilase superfamiliy. It has attracted substantial interest from academia and industry for its function of converting nitriles directly into the corresponding carboxylic acids in recent years. Thus nitrilase has played a crucial role in production of commercial carboxylic acids in chemical industry and detoxification of nitrile-contaminated wastes. However, conventional studies mainly focused on the bacterial nitrilase and the potential of fungal nitrilase has been far from being fully explored. Research on fungal nitrilase gene expression will advance our understanding for its biological function of fungal nitrilase in nitrile hydrolysis. Methodology/Principal Findings A fungal nitrilase gene from Gibberella intermedia was cloned through reverse transcription-PCR. The open reading frame consisted of 963 bp and potentially encoded a protein of 320 amino acid residues with a theoretical molecular mass of 35.94 kDa. Furthermore, the catalytic triad (Glu-45, Lys-127, and Cys-162) was proposed and confirmed by site-directed mutagenesis. The encoding gene was expressed in Escherichia coli Rosetta-gami (DE3) and the recombinant protein with His6-tag was purified to electrophoretic homogeneity. The purified enzyme exhibited optimal activity at 45°C and pH 7.8. This nitrilase was specific towards aliphatic and aromatic nitriles. The kinetic parameters V max and K m for 3-cyanopyridine were determined to be 0.81 µmol/min·mg and 12.11 mM through Hanes-Woolf plot, respectively. 3-Cyanopyridine (100 mM) could be thoroughly hydrolyzed into nicotinic acid within 10 min using the recombinant strain with the release of about 3% nicotinamide and no substrate was detected. Conclusions/Significance In the present study, a fungal nitrilase was cloned from the cDNA sequence of G. intermedia and successfully expressed in E. coli Rosetta-gami (DE3). The recombinant strain displayed good 3-cyanopyridine degradation efficiency and wide substrate spectrum. This fungal nitrilase might be a potential candidate for industrial applications in carboxylic acids production.
Critical Reviews in Biotechnology | 2017
Jin-Song Gong; Jinsong Shi; Zhen-Ming Lu; Heng Li; Zhemin Zhou; Zhenghong Xu
Abstract Nitrile-converting enzymes, including nitrilase and nitrile hydratase (NHase), have received increasing attention from researchers of industrial biocatalysis because of their critical role as a tool in organic synthesis of carboxylic acids and amides from nitriles. To date, these bioconversion approaches are considered as one of the most potential industrial processes using resting cells or purified enzymes as catalysts for production of food additives, pharmaceutical, and agrochemical precursors. This review focuses on the distribution and catalytic mechanism research of nitrile-converting enzymes in recent years. Molecular biology aspects to improve the biocatalytic performance of microbial nitrilase and NHase are demonstrated. The process developments of microbial nitrilase and NHase for organic synthesis are also discussed.
Applied and Environmental Microbiology | 2016
Zhen-Ming Lu; Na Liu; Li-Juan Wang; Lin-Huan Wu; Jin-Song Gong; Yong-Jian Yu; Guo-Quan Li; Jinsong Shi; Zheng-Hong Xu
ABSTRACT Acetoin (3-hydroxy-2-butanone) formation in vinegar microbiota is crucial for the flavor quality of Zhenjiang aromatic vinegar, a traditional vinegar produced from cereals. However, the specific microorganisms responsible for acetoin formation in this centuries-long repeated batch fermentation have not yet been clearly identified. Here, the microbial distribution discrepancy in the diacetyl/acetoin metabolic pathway of vinegar microbiota was revealed at the species level by a combination of metagenomic sequencing and clone library analysis. The results showed that Acetobacter pasteurianus and 4 Lactobacillus species (Lactobacillus buchneri, Lactobacillus reuteri, Lactobacillus fermentum, and Lactobacillus brevis) might be functional producers of acetoin from 2-acetolactate in vinegar microbiota. Furthermore, A. pasteurianus G3-2, L. brevis 4-22, L. fermentum M10-3, and L. buchneri F2-5 were isolated from vinegar microbiota by a culture-dependent method. The acetoin concentrations in two cocultures (L. brevis 4-22 plus A. pasteurianus G3-2 and L. fermentum M10-3 plus A. pasteurianus G3-2) were obviously higher than those in monocultures of lactic acid bacteria (LAB), while L. buchneri F2-5 did not produce more acetoin when coinoculated with A. pasteurianus G3-2. Last, the acetoin-producing function of vinegar microbiota was regulated in situ via augmentation with functional species in vinegar Pei. After 72 h of fermentation, augmentation with A. pasteurianus G3-2 plus L. brevis 4-22, L. fermentum M10-3, or L. buchneri F2-5 significantly increased the acetoin content in vinegar Pei compared with the control group. This study provides a perspective on elucidating and manipulating different metabolic roles of microbes during flavor formation in vinegar microbiota. IMPORTANCE Acetoin (3-hydroxy-2-butanone) formation in vinegar microbiota is crucial for the flavor quality of Zhenjiang aromatic vinegar, a traditional vinegar produced from cereals. Thus, it is of interest to understand which microbes are driving the formation of acetoin to elucidate the microbial distribution discrepancy in the acetoin metabolic pathway and to regulate the metabolic function of functional microbial groups in vinegar microbiota. Our study provides a perspective on elucidating and manipulating different metabolic roles of microbes during flavor formation in vinegar microbiota.
RSC Advances | 2015
Jin-Song Gong; Yue Wang; Dandan Zhang; Rong-Xian Zhang; Chang Su; Heng Li; Xiaomei Zhang; Zhenghong Xu; Jinsong Shi
Keratinase has attracted increasing attention in the field of biocatalysis in recent years because of its critical role in keratin resource exploitation and keratin waste degradation. However, conventional studies focused on keratinases from bacterial and fungal strains, especially those of the Bacillus genus, keratinase resources from actinomycetes are far from being fully explored. In this study, a novel keratinase-producing strain was isolated with wool as the sole carbon and nitrogen source and identified as Streptomyces aureofaciens K13. The keratinase was purified to electrophoretic homogeneity with a molecular mass of 46 kDa. The purified enzyme exhibited optimum activity at 75 °C and pH of 12.0. It remained extremely stable at alkaline pH values between 6 and 12 and at a high reaction temperature of 65 °C. The keratinase displayed significant activity toward casein, keratin, BSA and wool. It could be activated in the presence of K+, Cu2+, Mn2+, Ca2+, Li+, and Sr2+. The keratinase was completely inhibited by PMSF and moderately inhibited by EDTA, indicating that this keratinase is a metallo-serine keratinase. This enzyme could remain stable and even be promoted in the presence of surfactants, including SDS, Tween, and Triton; especially, 1% of Tween 80 and Triton X-100 could substantially enhance the activity by 46% and 38%, respectively. These results indicated certain advantages over conventional keratinases. The keratinase can completely remove blood stains when combined with detergents. The improvement effect of S. aureofaciens K13 keratinase by various surfactants and the favourable washing performance might indicate its significant application potential in the detergent industry. There are rare reports on keratinase production from S. aureofaciens.
Chemical Papers | 2014
Xiao-Yan Zhu; Jin-Song Gong; Heng Li; Zhen-Ming Lu; Jinsong Shi; Zhenghong Xu
Pseudomonas putida CGMCC3830 harboring nitrilase was used in isonicotinic acid production from 4-cyanopyridine. This nitrilase showed optimum activities towards 4-cyanopyridine at pH 7.5 and 45°C. The half-life of P. putida nitrilase was 93.3 h, 33.9 h, and 9.5 h at 30°C, 38°C, and 45°C, respectively. 4-Cyanopyridine (100 mM) was fully converted into isonicotinic acid within 20 min. The bench-scale production of isonicotinic acid was carried out using 3 mg of resting cells per mL in a 1 L system at 30°C and finally, 123 g L−1 of isonicotinic acid were obtained within 200 min without any by-products. The conversion reaction suffered from the product inhibition effect after the tenth feeding. The volumetric productivity was 36.9 g L−1 h−1. P. putida shows significant potential in nitrile hydrolysis for isonicotinic acid production. This paper is the first report on isonicotinic acid biosynthesis using Pseudomonas putida and it represents the highest isonicotinic acid production reported so far.
International Journal of Biological Macromolecules | 2016
Rong-Xian Zhang; Jin-Song Gong; Chang Su; Dandan Zhang; Hua Tian; Wenfang Dou; Heng Li; Jinsong Shi; Zhenghong Xu
Dehairing is a high pollution process in leather industry. Conventionally, the lime-sulfide mediated chemical process for dehairing would lead to the discharge of pollutants and corrosion of industrial equipment. Concerning these problems, keratinase has become a promising candidate for dehairing process in recent years. In this study, a keratinase-producing bacterium was isolated from sheepfold soil and identified as Brevibacillus parabrevis CGMCC 10798 based on the biochemical characteristics and molecular identification. The keratinase was purified to electrophoretic homogeneity with 17.19% of recovery, 13.18 folds of purification and an estimated molecular weight of 28kDa. The enzyme exhibited high keratinase activity and no collagenase activity. Besides, the keratinase showed optimal activity at 60°C and pH 8.0. The enzyme activity could be significantly increased in the presence of Na+ and Ca2+. And it was inhibited by EDTA, and PMSF, which indicated that the keratinase belongs to serine-metallo protease. The enzyme could remain stable in the presence of surfactants. Especially, 5mM Tween 40 and Triton 100 could improve the activity by 11% and 30%, respectively. Moreover, B. parabrevis keratinase could completely dehair goat wool within 7h, which indicated its application potential in leather industry.
Catalysis Science & Technology | 2016
Jin-Song Gong; Heng Li; Zhen-Ming Lu; Xiaojuan Zhang; Qiang Zhang; Jiang-Hong Yu; Zhemin Zhou; Jinsong Shi; Zhenghong Xu
Most available methods for modifying the catalytic properties of enzymes are costly and time-consuming, as they rely on the information of enzyme crystal structure or require handling large amounts of mutants. This study employs sequence analysis and saturation mutagenesis to improve the catalytic activity and reduce the by-product formation of fungal nitrilase in the absence of structural information. Site-saturation mutagenesis of isoleucine 128 and asparagine 161 in the fungal nitrilase from Gibberella intermedia was performed and mutants I128L and N161Q showed higher catalytic activity toward 3-cyanopyridine and weaker amide forming ability than the wild-type. Moreover, the activity of double mutant I128L–N161Q was improved by 100% and the amount of amide formed was reduced to only one third of that of the wild-type. The stability of the mutants was significantly enhanced at 30 and 40 °C. The catalytic efficiency of the mutant enzymes was substantially improved. In this study, we successfully applied a novel approach that required no structural information and minimal workload of mutant screening for engineering of fungal nitrilase.
Steroids | 2015
Yan Wu; Hui Li; Xiaomei Zhang; Jin-Song Gong; Heng Li; Zhiming Rao; Jinsong Shi; Zhenghong Xu
Hydroxylation of DHEA to 7α,15α-diOH-DHEA was catalyzed by NADPH-dependent cytochrome P450 monooxygenase from Colletotrichum lini. By adding coenzyme precursor nicotinic acid, the NADPH/NADP ratio was significantly increased, and the 7α,15α-diOH-DHEA molar conversion was enhanced from 37.37% to 50.85%. To improve the availability of intracellular NADPH, a dual cosubstrate-coupled system consisting of nicotinic acid and glucose was investigated in C. lini. Using 20mM nicotinic acid and 15g/L glucose as cosubstrate for NADPH regeneration, the 7α,15α-diOH-DHEA molar conversion was dramatically increased by 74.58%. The conversion course was simultaneously shortened by 30h. Moreover, a fed-batch transformation model was established to diminish DHEA toxicity to C. lini and further increase DHEA concentration. The maximum concentration of DHEA was elevated to 15g/L using a three-batch transformation in a coenzyme regeneration system, and 7α,15α-diOH-DHEA production of 11.21g/L could be achieved after 60h of biotransformation. These results demonstrated that this strategy was promising for steroids hydroxylation.