Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenhai Luo is active.

Publication


Featured researches published by Wenhai Luo.


Chemosphere | 2013

Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting

Fan Yang; Guo Xue Li; Qing Yuan Yang; Wenhai Luo

This study investigated the effect of bulking agents on the maturity and gaseous emissions of composting kitchen waste. Three different bulking agents (cornstalks, sawdust, and spent mushroom substrate) were used to compost kitchen waste under aerobic conditions in 60-L reactors for a 28-d period. A control treatment was also studied using kitchen waste without a bulking agent. During the experiment, maturity indexes such as temperature, pH value, C/N ratio, and germination index were determined, and continuous measurements of leachate and gaseous emissions (CH₄, N₂O, and NH₃) were taken. The results showed that all of the composts with bulking agents reached the required maturity standard, and the addition of spent mushroom substrate gave the highest maturity (C/N ratio decreased from 23 to 16 and germination index increased from 53% to 111%). The bulking agents also reduced leachate production and CH₄ and N₂O emissions, but had little impact on NH3 emissions. Composting with sawdust as a bulking agent was found to emit less total greenhouse gas (33 kg CO₂-eqt(-1) dry matter) than the other treatments.


Bioresource Technology | 2014

High retention membrane bioreactors: challenges and opportunities

Wenhai Luo; Faisal I. Hai; William E. Price; Wenshan Guo; Hao H. Ngo; Kazuo Yamamoto; Long D. Nghiem

Extensive research has focussed on the development of novel high retention membrane bioreactor (HR-MBR) systems for wastewater reclamation in recent years. HR-MBR integrates high rejection membrane separation with conventional biological treatment in a single step. High rejection membrane separation processes currently used in HR-MBR applications include nanofiltration, forward osmosis, and membrane distillation. In these HR-MBR systems, organic contaminants can be effectively retained, prolonging their retention time in the bioreactor and thus enhancing their biodegradation. Therefore, HR-MBR can offer a reliable and elegant solution to produce high quality effluent. However, there are several technological challenges associated with the development of HR-MBR, including salinity build-up, low permeate flux, and membrane degradation. This paper provides a critical review on these challenges and potential opportunities of HR-MBR for wastewater treatment and water reclamation, and aims to guide and inform future research on HR-MBR for fast commercialisation of this innovative technology.


Water Research | 2017

Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal

Wenhai Luo; Hop V. Phan; Ming Xie; Faisal I. Hai; William E. Price; Menachem Elimelech; Long D. Nghiem

This study systematically compares the performance of osmotic membrane bioreactor - reverse osmosis (OMBR-RO) and conventional membrane bioreactor - reverse osmosis (MBR-RO) for advanced wastewater treatment and water reuse. Both systems achieved effective removal of bulk organic matter and nutrients, and almost complete removal of all 31 trace organic contaminants investigated. They both could produce high quality water suitable for recycling applications. During OMBR-RO operation, salinity build-up in the bioreactor reduced the water flux and negatively impacted the system biological treatment by altering biomass characteristics and microbial community structure. In addition, the elevated salinity also increased soluble microbial products and extracellular polymeric substances in the mixed liquor, which induced fouling of the forward osmosis (FO) membrane. Nevertheless, microbial analysis indicated that salinity stress resulted in the development of halotolerant bacteria, consequently sustaining biodegradation in the OMBR system. By contrast, biological performance was relatively stable throughout conventional MBR-RO operation. Compared to conventional MBR-RO, the FO process effectively prevented foulants from permeating into the draw solution, thereby significantly reducing fouling of the downstream RO membrane in OMBR-RO operation. Accumulation of organic matter, including humic- and protein-like substances, as well as inorganic salts in the MBR effluent resulted in severe RO membrane fouling in conventional MBR-RO operation.


Chemosphere | 2014

Effects of mixing and covering with mature compost on gaseous emissions during composting

Wenhai Luo; Jing Yuan; Yi Ming Luo; Guo Xue Li; Long D. Nghiem; William E. Price

This study investigated effects of mature compost on gaseous emissions during composting using pig manure amended with corn stalks. Apart from a control treatment, three treatments were conducted with the addition of 5% (wet weight of raw materials) of mature compost: (a) mixing raw materials with mature compost at the beginning of composting; (b) covering raw materials with mature compost throughout the experimental period; and (c) covering raw materials with mature compost at the start of composting, but incorporating it into composting pile on day 6 of composting. Mature compost used for the last treatment was inoculated with 2% (wet weight) of raw materials of strain M5 (a methanotrophic bacterium) solution. During 30-d of composting, three treatments with the addition of mature compost could reduce CH4 emission by 53-64% and N2O emission by 43-71%. However, covering with mature compost throughout the experimental period increased cumulative NH3 emission by 61%, although it could reduce 34% NH3 emission in the first 3d. Inoculating strain M5 in mature compost covered on the top of composting pile within first 6d enhanced CH4 oxidation, but simultaneously increased N2O emission. In addition, mixing with mature compost could improve compost maturity. Given the operational convenience in practice, covering with mature compost and then incorporating it into composting pile is a suitable approach to mitigate gaseous emissions during composting.


Bioresource Technology | 2015

Effects of salinity build-up on biomass characteristics and trace organic chemical removal: Implications on the development of high retention membrane bioreactors

Wenhai Luo; Faisal I. Hai; Jinguo Kang; William E. Price; Wenshan Guo; Hao H. Ngo; Kazuo Yamamoto; Long D. Nghiem

This study investigated the impact of salinity build-up on the performance of membrane bioreactor (MBR), specifically in terms of the removal and fate of trace organic chemicals (TrOCs), nutrient removal, and biomass characteristics. Stepwise increase of the influent salinity, simulating salinity build-up in high retention MBRs, adversely affected the metabolic activity in the bioreactor, thereby reducing organic and nutrient removal. The removal of hydrophilic TrOCs by MBR decreased due to salinity build-up. By contrast, with the exception of 17α-ethynylestradiol, the removal of all hydrophobic TrOCs was not affected at high salinity. Moreover, salinity build-up had negligible impact on the residual accumulation of TrOCs in the sludge phase except for a few hydrophilic compounds. Additionally, the response of the biomass to salinity stress also dramatically enhanced the release of both soluble microbial products (SMP) and extracellular polymeric substances (EPS), leading to severe membrane fouling.


Chemosphere | 2015

The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system.

Wenhai Luo; Faisal I. Hai; Jinguo Kang; William E. Price; Long D. Nghiem; Menachem Elimelech

This study investigates the performance of an integrated osmotic and microfiltration membrane bioreactor (O/MF-MBR) system for wastewater treatment and reclamation. The O/MF-MBR system simultaneously used microfiltration (MF) and forward osmosis (FO) membranes to extract water from the mixed liquor of an aerobic bioreactor. The MF membrane facilitated the bleeding of dissolved inorganic salts and thus prevented the build-up of salinity in the bioreactor. As a result, sludge production and microbial activity were relatively stable over 60 days of operation. Compared to MF, the FO process produced a better permeate quality in terms of nutrients, total organic carbon, as well as hydrophilic and biologically persistent trace organic chemicals (TrOCs). The high rejection by the FO membrane also led to accumulation of hydrophilic and biologically persistent TrOCs in the bioreactor, consequently increasing their concentration in the MF permeate. On the other hand, hydrophobic and readily biodegradable TrOCs were minimally detected in both MF and FO permeates, with no clear difference in the removal efficiencies between two processes.


Waste Management | 2016

Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting.

Jing Yuan; David Chadwick; Difang Zhang; Guoxue Li; Shili Chen; Wenhai Luo; Longlong Du; Shengzhou He; Shengping Peng

This study investigated effects of aeration rate (AR) on maturity and gaseous emissions during sewage sludge composting, sewage sludge and corn stalks as the bulking agent were co-composted at different ARs (0.1, 0.2, 0.3L·kg(-1) dry matter (DM)·min(-1)). The thermophilic phase for the low and moderate AR treatments was able meet sanitation requirements, but too short to meet sanitation requirements in the high AR treatment. The high AR treatment was significantly different from the other treatments, and had the lowest electrical conductivity and highest E4/E6(absorbance ratio of wavelength 465 and 665nm). The AR influences the nitrogen variations; high AR compost had the highest NH4(+)-N content and lowest NOx(-)-N content. The AR was the main factor influencing compost stability, but the AR had little impact on pH and the germination index. The moderate AR treatment had the highest NH3 emissions during composting, while the low AR treatment had the highest CH4 and N2O emissions. Based on our comprehensive investigation, the recommended AR for sludge composting is 0.2L·kg(-1) DM·min(-1).


Journal of Environmental Sciences-china | 2013

Effect of phosphogypsum and dicyandiamide as additives on NH3, N2O and CH4 emissions during composting

Yiming Luo; Guoxue Li; Wenhai Luo; Frank Schuchardt; Tao Jiang; Degang Xu

A laboratory scale experiment of composting in a forced aeration system using pig manure with cornstalks was carried out to investigate the effects of both phosphogypsum and dicyandiamide (DCD, C2H4N4) as additives on gaseous emissions and compost quality. Besides a control, there were three amended treatments with different amounts of additives. The results indicated that the phosphogypsum addition at the rate of 10% of mixture dry weight decreased NH3 and CH4 emissions significantly during composting. The addition of DCD at the rate of 0.2% of mixture dry weight together with 10% of phosphogypsum further reduced the N2O emission by affecting the nitrification process. Reducing the phosphogypsum addition to 5% in the presence of 0.2% DCD moderately increased the NH3 emissions but not N2O emission. The additives increased the ammonium content and electrical conductivity significantly in the final compost. No adverse effect on organic matter degradation or the germination index of the compost was found in the amended treatments. It was recommended that phosphogypsum and DCD could be used in composting for the purpose of reducing NH3, CH4 and N2O emissions. Optimal conditions and dose of DCD additive during composting should be determined with different materials and composting systems in further study.


Bioresource Technology | 2016

Phosphorus and water recovery by a novel osmotic membrane bioreactor - reverse osmosis system

Wenhai Luo; Faisal I. Hai; William E. Price; Wenshan Guo; Hao H. Ngo; Kazuo Yamamoto; Long D. Nghiem

An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water.


Bioresource Technology | 2016

Effects of salinity build-up on the performance and bacterial community structure of a membrane bioreactor

Wenhai Luo; Hop V. Phan; Faisal I. Hai; William E. Price; Wenshan Guo; Hao H. Ngo; Kazuo Yamamoto; Long D. Nghiem

This study investigated the effects of salinity increase on bacterial community structure in a membrane bioreactor (MBR) for wastewater treatment. The influent salt loading was increased gradually to simulate salinity build-up in the bioreactor during the operation of a high retention-membrane bioreactor (HR-MBR). Bacterial community diversity and structure were analyzed using 454 pyrosequencing of 16S rRNA genes of MBR mixed liquor samples. Results show that salinity increase reduced biological performance but did not affect microbial diversity in the bioreactor. Unweighted UniFrac and taxonomic analyses were conducted to relate the reduced biological performance to the change of bacterial community structure. In response to the elevated salinity condition, the succession of halophobic bacteria by halotolerant/halophilic microbes occurred and thereby the biological performance of MBR was recovered. These results suggest that salinity build-up during HR-MBR operation could be managed by allowing for the proliferation of halotolerant/halophilic bacteria.

Collaboration


Dive into the Wenhai Luo's collaboration.

Top Co-Authors

Avatar

Guoxue Li

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Faisal I. Hai

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Difang Zhang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jing Yuan

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yun Li

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoye Song

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bangxi Zhang

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge