Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenjie Ren is active.

Publication


Featured researches published by Wenjie Ren.


Frontiers in Microbiology | 2015

Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil

Gaidi Ren; Wenjie Ren; Ying Teng; Zhengao Li

Understanding the potential for Polycyclic aromatic hydrocarbons (PAH) degradation by indigenous microbiota and the influence of PAHs on native microbial communities is of great importance for bioremediation and ecological evaluation. Various studies have focused on the bacterial communities in the environment where obvious PAH degradation was observed, little is known about the microbiota in the soil where poor degradation was observed. Soil microcosms were constructed with a red soil by supplementation with a high-molecular-weight PAH (pyrene) at three dosages (5, 30, and 70 mg ⋅ kg-1). Real-time PCR was used to evaluate the changes in bacterial abundance and pyrene dioxygenase gene (nidA) quantity. Illumina sequencing was used to investigate changes in diversity, structure, and composition of bacterial communities. After 42 days of incubation, no evident degradation was observed. The poor degradation ability was associated with the stability or significant decrease of abundance of the nidA gene. Although the abundance of the bacterial 16S rRNA gene was not affected by pyrene, the bacterial richness and diversity were decreased with increasing dosage of pyrene and the community structure was changed. Phylotypes affected by pyrene were comprehensively surveyed: (1) at the high taxonomic level, seven of the abundant phyla/classes (relative abundance >1.0%) including Chloroflexi, AD3, WPS-2, GAL5, Alphaproteobacteria, Actinobacteria, and Deltaproteobacteria and one rare phylum Crenarchaeota were significantly decreased by at least one dosage of pyrene, while three phyla/classes (Acidobacteria, Betaproteobacteria, and Gammaproteobacteria) were significantly increased; and (2) at the lower taxonomic level, the relative abundances of twelve orders were significantly depressed, whereas those of nine orders were significantly increased. This work enhanced our understanding of the biodegradation potential of pyrene in red soil and the effect of pyrene on soil ecosystems at the microbial community level.


Journal of Environmental Sciences-china | 2012

Degradation of pyrene by immobilized microorganisms in saline-alkaline soil.

Shanxian Wang; Xiaojun Li; Wan Liu; Peijun Li; Lingxue Kong; Wenjie Ren; Haiyan Wu; Ying Tu

Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is very difficult in saline-alkaline soil due to the inhibition of microbial growth under saline-alkaline stress. The microorganisms that can most effectively degrade PAHs were screened by introducing microorganisms immobilized on farm byproducts and assessing the validity of the immobilizing technique for PAHs degradation in pyrene-contaminated saline-alkaline soil. Among the microorganisms examined, it was found that Mycobacterium sp. B2 is the best, and can degrade 82.2% and 83.2% of pyrene for free and immobilized cells after 30 days of incubation. The immobilization technique could increase the degradation of pyrene significantly, especially for fungi. The degradation of pyrene by the immobilized microorganisms Mucor sp. F2, fungal consortium MF and co-cultures of MB+MF was increased by 161.7% (P < 0.05), 60.1% (P < 0.05) and 59.6% (P < 0.05) after 30 days, respectively, when compared with free F2, MF and MB+MF. Scanning electron micrographs of the immobilized microstructure proved the positive effects of the immobilized microbial technique on pyrene remediation in saline-alkaline soil, as the interspace of the carrier material structure was relatively large, providing enough space for cell growth. Co-cultures of different bacterial and fungal species showed different abilities to degrade PAHs. The present study suggests that Mycobacterium sp. B2 can be employed for in situ bioremediation of PAHs in saline-alkaline soil, and immobilization of fungi on farm byproducts and nutrients as carriers will enhance fungus PAH-degradation ability in saline-alkaline soil.


Journal of Hazardous Materials | 2015

Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community.

Wenjie Ren; Gaidi Ren; Ying Teng; Zhengao Li; Lina Li

The increased application of graphene raises concerns about its environmental impact, but little information is available on the effect of graphene on the soil microbial community. This study evaluated the impact of graphene on the structure, abundance and function of the soil bacterial community based on quantitative real-time polymerase chain reaction (qPCR), pyrosequencing and soil enzyme activities. The results show that the enzyme activities of dehydrogenase and fluorescein diacetate (FDA) esterase and the biomass of the bacterial populations were transiently promoted by the presence of graphene after 4 days of exposure, but these parameters recovered completely after 21 days. Pyrosequencing analysis suggested a significant shift in some bacterial populations after 4 days, and the shift became weaker or disappeared as the exposure time increased to 60 days. During the entire exposure process, the majority of bacterial phylotypes remained unaffected. Some bacterial populations involved in nitrogen biogeochemical cycles and the degradation of organic compounds can be affected by the presence of graphene.


Journal of Environmental Sciences-china | 2011

Spatial and temporal distribution of acetochlor in sediments and riparian soils of the Songhua River Basin in northeastern China.

Xiaoyin Sun; Qixing Zhou; Wenjie Ren; Xuhui Li; Liping Ren

The Songhua River Basin is a burgeoning agricultural area in the modern times in China. Particularly in recent years, increasing chemical fertilizers and pesticides have been applied with the development of agricultural production. However, the situation of non-point source pollution (NSP) from agricultural production in this basin is still obscure. In order to solve the problem, the occurrence and distribution of acetochlor in sediments and riparian soils of the Songhua River Basin before rain season and after rain season were investigated. In addition, total organic carbon was analyzed. The result showed that the concentration of acetochlor ranged from 0.47 to 11.76 microg/kg in sediments and 0.03 to 709.37 microg/kg in riparian soils. During the high flow period in 2009, the mean concentration was 4.79 microg/kg in sediments and 0.75 microg/kg in riparian soils, respectively. Similarly, the mean concentration was 2.53 microg/kg in sediments and 61.36 microg/kg in riparian soils, during the average flow period in 2010. There was a significant correlation between the concentration of acetochlor and total organic carbon in surface sediments. Moreover, the distribution of acetochlor in sediments of the Songhua River was significantly correlated to land use and topography of the watershed. The investigated data suggested that the concentration of acetochlor in the Songnen Plain and the Sanjiang Plain was higher than that in the other areas of the basin, and riparian buffering zones in these areas had been destroyed by human activities. The optimal agricultural measures to alleviate the contamination of pesticides should be adopted, including controlling agricultural application of acetochlor and ecological restoration of riparian buffering strips.


Science of The Total Environment | 2016

Non-target effects of repeated chlorothalonil application on soil nitrogen cycling: The key functional gene study

Manyun Zhang; Zhihong Xu; Ying Teng; Peter Christie; Jun Wang; Wenjie Ren; Yongming Luo; Zhengao Li

The widespread and increasing application of chlorothalonil (CTN) raises concerns about its non-target impacts, but little information is available on the effect of CTN on the key functional genes related to soil nitrogen (N) cycling, especially in the case of repeated applications. In the present study, a microcosm incubation was conducted to determine CTN residues and the impacts on the abundances of key functional genes related to N cycling after repeated CTN applications. The results demonstrated that repeated CTN applications at the recommended application rate and five times the recommended rate led to the accumulation of CTN residue in soil at concentrations of 5.59 and 78.79 mg kg(-1), respectively, by the end of incubation. Real time PCR (RT-PCR) revealed that repeated CTN applications had negative effects on the chiA and aprA gene abundances. There were significantly negative correlations between CTN residues and abundances of AOA and AOB genes. In addition, the abundances of key functional genes involved in soil denitrification were declined by repeated CTN applications with the sole exception of the nosZ gene. This study suggests that repeated CTN applications could lead to the accumulation of CTN residue and generate somewhat inconsistent and erratic effects on the abundances of key functional genes related to soil N cycling.


Food Chemistry | 2016

Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars

Xuhui Li; Qixing Zhou; Xiaoyin Sun; Wenjie Ren

The concentration of nutrient elements is an important quality characteristic of vegetables, and the variation in accumulation among cultivars can provide clues about the mechanism of low accumulation of heavy metals. Pot-culture experiments were arranged under four cadmium (Cd) treatments (CK, 1.0, 2.5 and 5.0mg/kg) to explore influences of Cd on the accumulation of nutrient elements in 25 welsh onion cultivars. There were significant positive correlations (p<0.05) between Cd and nutrient elements in the pseudostems and leaves. There were also significant positive correlations in nutrient elements (p<0.05) among cultivars, which might be disturbed under high Cd treatments, especially for P, Fe and Mn. Our results suggested that there is a synergistic effect on the accumulation between Cd and nutrient elements, and within nutrient elements among cultivars. In addition the uptake and translocation process of Cd was closely related to Mn in welsh onion.


Science of The Total Environment | 2016

Sulfonated graphene-induced hormesis is mediated through oxidative stress in the roots of maize seedlings.

Wenjie Ren; Haiwei Chang; Ying Teng

The present study investigated the impact of sulfonated graphene (SG) on the growth of maize seedlings at a concentration range of 0-500mgL-1. Stress-related parameters including reactive oxygen species (ROS), intracellular Ca2+, antioxidant enzyme activities, lipid peroxidation, membrane leakage, cell death and root morphology were examined to reveal the potential mechanisms. The results indicate that SG induced a hormesis effect on plant height, i.e., low-concentration (50mgL-1) stimulation and high-concentration (500mgL-1) inhibition. The hormesis effect of SG on plant height was directly correlated with ROS levels in roots. A low concentration (50mgL-1) of SG promoted ROS scavenging, alleviated oxidative stress, enhanced the soluble protein (SP) content, and decreased intracellular Ca2+ and cell death in the roots. At a higher concentration (500mgL-1), SG stimulated the generation of ROS in the roots, decreased SP content in the leaves, increased antioxidant enzyme activities, intracellular Ca2+, electrolyte leakage and cell death in the roots, and increased the malondialdehyde (MDA) content in both roots and leaves. Different changes were observed for root morphology at SG concentrations of 50 and 500mgL-1, and a larger amount of SG was deposited onto the root surface at a concentration of 500mgL-1 compared with 50mgL-1.


Frontiers in Plant Science | 2015

Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities

Ying Teng; Y.M. Luo; Wenting Ma; Lingjia Zhu; Wenjie Ren; Yongming Luo; Peter Christie; Zhengao Li

This study aimed to explore the effects of Trichoderma reesei FS10-C on the phytoremediation of Cd-contaminated soil by the hyperaccumulator Sedum plumbizincicola and on soil fertility. The Cd tolerance of T. reesei FS10-C was characterized and then a pot experiment was conducted to investigate the growth and Cd uptake of S. plumbizincicola with the addition of inoculation agents in the presence and absence of T. reesei FS10-C. The results indicated that FS10-C possessed high Cd resistance (up to 300 mg L-1). All inoculation agents investigated enhanced plant shoot biomass by 6–53% of fresh weight and 16–61% of dry weight and Cd uptake by the shoots by 10–53% compared with the control. All inoculation agents also played critical roles in increasing soil microbial biomass and microbial activities (such as biomass C, dehydrogenase activity and fluorescein diacetate hydrolysis activity). Two inoculation agents accompanied by FS10-C were also superior to the inoculation agents, indicating that T. reesei FS10-C was effective in enhancing both Cd phytoremediation by S. plumbizincicola and soil fertility. Furthermore, solid fermentation powder of FS10-C showed the greatest capacity to enhance plant growth, Cd uptake, nutrient release, microbial biomass and activities, as indicated by its superior ability to promote colonization by Trichoderma. The solid fermentation powder of FS10-C might serve as a suitable inoculation agent for T. reesei FS10-C to enhance both the phytoremediation efficiency of Cd-contaminated soil and soil fertility.


Pedosphere | 2017

Optimization of Ex-Situ Washing Removal of Polycyclic Aromatic Hydrocarbons from a Contaminated Soil Using Nano-Sulfonated Graphene

Xinhong Gan; Ying Teng; Wenjie Ren; Jun Ma; Peter Christie; Yongming Luo

Abstract Ex-situ soil washing technology offers advantages such as speed and efficiency of remediation and range of application and has been developed to conform with legal requirements and best management practices in USA and some European countries. In this study, nano-sulfonated graphene (SGE) was used as a washing agent to evaluate different processing (washing) parameters for the ectopic leaching removal of polycyclic aromatic hydrocarbons (PAHs) from a coking plant soil. X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectroscopy (FTIR) were used to analyze the characteristics of the SGE tested. The results showed that SGE had a strong adsorption capacity for PAHs through the role of π-π, H-π, and anion-π interactions. The washing parameters, an SGE concentration of 2 000 mg L−1, a liquid/soil (L/S) ratio of 10:1, and 4 cycles of successive washing, were set to arrive to the optimum condition for achieving more than 80% of PAH removal. Under the optimum condition, the PAH removal rate decreased with increasing ring numbers. After one washing cycle at SGE concentration of 2 000 mg L−1 and L/S ratio of 10:1, the PAH removal rate of the SGE tested was much higher than that of Tween 80 (TW80) or methyl-s-cyclodextrin (MCD) (P


Science of The Total Environment | 2018

Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils

Yongfeng Xu; Shixiang Dai; Ke Meng; Yuting Wang; Wenjie Ren; Ling Zhao; Peter Christie; Ying Teng

The residual levels and risk assessment of several potentially toxic elements (PTEs), phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in rural soils near different types of pollution sources in Tianjin, China, were studied. The soils were found to be polluted to different extents with PTEs, PAEs and PAHs from different pollution sources. The soil concentrations of chromium (Cr), nickel (Ni), di-n-butyl phthalate (DnBP), acenaphthylene (Any) and acenaphthene (Ane) were higher than their corresponding regulatory reference limits. The health risk assessment model used to calculate human exposure indicates that both non-carcinogenic and carcinogenic risks from selected pollutants were generally acceptable or close to acceptable. Different types of pollution sources and soil physicochemical properties substantially affected the soil residual concentrations of and risks from these pollutants. PTEs in soils collected from agricultural lands around industrial and residential areas and organic pollutants (PAEs and PAHs) in soils collected from agricultural areas around livestock breeding were higher than those from other types of pollution sources and merit long-term monitoring.

Collaboration


Dive into the Wenjie Ren's collaboration.

Top Co-Authors

Avatar

Ying Teng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongming Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Peter Christie

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhengao Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shixiang Dai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoyin Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gaidi Ren

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge