Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenmiao Shu is active.

Publication


Featured researches published by Wenmiao Shu.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass.

Tuomas P. J. Knowles; Wenmiao Shu; Glyn L. Devlin; Sarah Meehan; Stefan Auer; Christopher M. Dobson; Mark E. Welland

Aggregation of proteins and peptides is a widespread and much-studied problem, with serious implications in contexts ranging from biotechnology to human disease. An understanding of the proliferation of such aggregates under specific conditions requires a quantitative knowledge of the kinetics and thermodynamics of their formation; measurements that to date have remained elusive. Here, we show that precise determination of the growth rates of ordered protein aggregates such as amyloid fibrils can be achieved through real–time monitoring, using a quartz crystal oscillator, of the changes in the numbers of molecules in the fibrils from variations in their masses. We show further that this approach allows the effect of other molecular species on fibril growth to be characterized quantitatively. This method is widely applicable, and we illustrate its power by exploring the free-energy landscape associated with the conversion of the protein insulin to its amyloid form and elucidate the role of a chemical chaperone and a small heat shock protein in inhibiting the aggregation reaction.


Biofabrication | 2016

Biofabrication: reappraising the definition of an evolving field

Jürgen Groll; Thomas Boland; Torsten Blunk; Jason A. Burdick; Dong Woo Cho; Paul D. Dalton; Brian Derby; Gabor Forgacs; Qing Li; Vladimir Mironov; Lorenzo Moroni; Makoto Nakamura; Wenmiao Shu; Shoji Takeuchi; Giovanni Vozzi; Tim B. F. Woodfield; Tao Xu; James J. Yoo; Jos Malda

Biofabrication is an evolving research field that has recently received significant attention. In particular, the adoption of Biofabrication concepts within the field of Tissue Engineering and Regenerative Medicine has grown tremendously, and has been accompanied by a growing inconsistency in terminology. This article aims at clarifying the position of Biofabrication as a research field with a special focus on its relation to and application for Tissue Engineering and Regenerative Medicine. Within this context, we propose a refined working definition of Biofabrication, including Bioprinting and Bioassembly as complementary strategies within Biofabrication.


Biofabrication | 2015

Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.

Alan Faulkner-Jones; Catherine Fyfe; Dirk-Jan Cornelissen; John Gardner; Jason King; Aidan Courtney; Wenmiao Shu

We report the first investigation into the bioprinting of human induced pluripotent stem cells (hiPSCs), their response to a valve-based printing process as well as their post-printing differentiation into hepatocyte-like cells (HLCs). HLCs differentiated from both hiPSCs and human embryonic stem cells (hESCs) sources were bioprinted and examined for the presence of hepatic markers to further validate the compatibility of the valve-based bioprinting process with fragile cell transfer. Examined cells were positive for nuclear factor 4 alpha and were demonstrated to secrete albumin and have morphology that was also found to be similar to that of hepatocytes. Both hESC and hiPSC lines were tested for post-printing viability and pluripotency and were found to have negligible difference in terms of viability and pluripotency between the printed and non-printed cells. hESC-derived HLCs were 3D printed using alginate hydrogel matrix and tested for viability and albumin secretion during the remaining differentiation and were found to be hepatic in nature. 3D printed with 40-layer of HLC-containing alginate structures reached peak albumin secretion at day 21 of the differentiation protocol. This work demonstrates that the valve-based printing process is gentle enough to print human pluripotent stem cells (hPSCs) (both hESCs and hiPSCs) while either maintaining their pluripotency or directing their differentiation into specific lineages. The ability to bioprint hPSCs will pave the way for producing organs or tissues on demand from patient specific cells which could be used for animal-free drug development and personalized medicine.


Angewandte Chemie | 2015

Rapid Formation of a Supramolecular Polypeptide–DNA Hydrogel for In Situ Three‐Dimensional Multilayer Bioprinting

Chuang Li; Alan Faulkner-Jones; Alison R. Dun; Juan Jin; Ping Chen; Yongzheng Xing; Zhongqiang Yang; Zhibo Li; Wenmiao Shu; Dongsheng Liu; Rory R. Duncan

A rapidly formed supramolecular polypeptide-DNA hydrogel was prepared and used for in situ multilayer three-dimensional bioprinting for the first time. By alternative deposition of two complementary bio-inks, designed structures can be printed. Based on their healing properties and high mechanical strengths, the printed structures are geometrically uniform without boundaries and can keep their shapes up to the millimeter scale without collapse. 3D cell printing was demonstrated to fabricate live-cell-containing structures with normal cellular functions. Together with the unique properties of biocompatibility, permeability, and biodegradability, the hydrogel becomes an ideal biomaterial for 3D bioprinting to produce designable 3D constructs for applications in tissue engineering.


Nano Letters | 2008

Polyelectrolyte Brush Amplified Electroactuation of Microcantilevers

Feng Zhou; P. Maarten Biesheuvel; Eun-Young Choi; Wenmiao Shu; Rosa Poetes; Ullrich Steiner; Wilhelm T. S. Huck

This paper describes the electroactuation of microcantilevers coated on one side with cationic polyelectrolyte brushes. We observed very strong cantilever deflection by alternating the potential on the cantilever between +0.5 and -0.5 V at frequencies up to 0.25 Hz. The actuation resulted from significant increases in the expansive stresses in the polymer brush layer at both negative and positive potentials. However, the deflection at negative bias was significantly larger. We have developed a theoretical framework that correlates conformational changes of the polymer chains in the brush layer with the reorganization of ions due to the potential bias. The model predicts a strong increase in the polymer volume fraction, close to the interface, which results in large expansive stresses that bend the cantilever at negative potentials. The model also predicts that the actuation responds much stronger to negative potentials than positive potentials, as observed in the experiments.


Biosensors and Bioelectronics | 2008

Highly specific label-free protein detection from lysed cells using internally referenced microcantilever sensors

Wenmiao Shu; Sophie Laurenson; Tuomas P. J. Knowles; Paul Ko Ferrigno; Ashwin A. Seshia

We report the investigation of label-free protein detection directly from lysed cells using microcantilever sensors. The integration of an internally referenced microcantilever sensor combined with peptide aptamer technology enables scalable and label-free detection of proteins from a complex biological environment (e.g. cell lysate). The internally referenced microcantilever sensor was found to be effective in minimizing both the effects of thermal drift and non-specific binding interactions with the backside of the cantilever, thereby allowing protein detection in a complex biological background. Highly specific peptide aptamers are used to modify the cantilever surface to specifically detect less than 80 nM CDK2 protein from yeast cell lysate. This binding of CDK2 on the microcantilever generates a tensile surface stress of average magnitude equal to 70+/-22 mN/m. Similar experiments conducted with quartz crystal microbalance (QCM) technology are consistent with the response observed using microcantilever sensors.


Nature Medicine | 2017

Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids

Fotios Sampaziotis; Alexander Justin; O Tysoe; Stephen J. Sawiak; Edmund Godfrey; Sara Upponi; Richard L. Gieseck; Miguel Cardoso de Brito; Natalie Lie Berntsen; María J Gómez-Vázquez; Daniel Ortmann; Loukia Yiangou; Alexander Ross; Johannes Bargehr; Alessandro Bertero; Mariëlle C. F. Zonneveld; Marianne Terndrup Pedersen; Matthias Pawlowski; Laura Valestrand; Pedro Madrigal; Nikitas Georgakopoulos; Negar Pirmadjid; Gregor Skeldon; John Casey; Wenmiao Shu; Paulina M Materek; Kirsten E. Snijders; Stephanie E. Brown; Casey Rimland; Ingrid Simonic

The treatment of common bile duct (CBD) disorders, such as biliary atresia or ischemic strictures, is restricted by the lack of biliary tissue from healthy donors suitable for surgical reconstruction. Here we report a new method for the isolation and propagation of human cholangiocytes from the extrahepatic biliary tree in the form of extrahepatic cholangiocyte organoids (ECOs) for regenerative medicine applications. The resulting ECOs closely resemble primary cholangiocytes in terms of their transcriptomic profile and functional properties. We explore the regenerative potential of these organoids in vivo and demonstrate that ECOs self-organize into bile duct–like tubes expressing biliary markers following transplantation under the kidney capsule of immunocompromised mice. In addition, when seeded on biodegradable scaffolds, ECOs form tissue-like structures retaining biliary characteristics. The resulting bioengineered tissue can reconstruct the gallbladder wall and repair the biliary epithelium following transplantation into a mouse model of injury. Furthermore, bioengineered artificial ducts can replace the native CBD, with no evidence of cholestasis or occlusion of the lumen. In conclusion, ECOs can successfully reconstruct the biliary tree, providing proof of principle for organ regeneration using human primary cholangiocytes expanded in vitro.


BJUI | 2013

Elasticity as a biomarker for prostate cancer

Daniel W. Good; Grant D. Stewart; Steven Hammer; Paul Scanlan; Wenmiao Shu; Simon Phipps; Robert Lewis Reuben; Alan McNeill

To systematically review the range of methods available for assessing elasticity in the prostate and to examine its use as a biomarker for prostate cancer.


Bioactive Materials | 2017

3D bioactive composite scaffolds for bone tissue engineering

Gareth Turnbull; Jon Clarke; Frederic Picard; Philip Riches; Luanluan Jia; Fengxuan Han; Bin Li; Wenmiao Shu

Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.


Trends in Biotechnology | 2017

Biofabrication: A Guide to Technology and Terminology

Lorenzo Moroni; Thomas Boland; Jason A. Burdick; Carmelo De Maria; Brian Derby; Gabor Forgacs; Jürgen Groll; Qing Li; Jos Malda; Vladimir Mironov; Carlos Mota; Makoto Nakamura; Wenmiao Shu; Shoji Takeuchi; Tim B. F. Woodfield; Tao Xu; James J. Yoo; Giovanni Vozzi

Biofabrication holds the potential to generate constructs that more closely recapitulate the complexity and heterogeneity of tissues and organs than do currently available regenerative medicine therapies. Such constructs can be applied for tissue regeneration or as in vitro 3D models. Biofabrication is maturing and growing, and scientists with different backgrounds are joining this field, underscoring the need for unity regarding the use of terminology. We therefore believe that there is a compelling need to clarify the relationship between the different concepts, technologies, and descriptions of biofabrication that are often used interchangeably or inconsistently in the current literature. Our objective is to provide a guide to the terminology for different technologies in the field which may serve as a reference for the biofabrication community.

Collaboration


Dive into the Wenmiao Shu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel W. Good

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge