Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenqin Song is active.

Publication


Featured researches published by Wenqin Song.


Molecular Biology Reports | 2011

Identification of genes differentially expressed in cauliflower associated with resistance to Xanthomonas campestris pv. campestris.

Hanmin Jiang; Wenqin Song; Ai Li; Xiao Yang; Deling Sun

Black rot, caused by Xanthomonas campestris pv. campestris (Pammel) Dowson (Xcc), is one of the most damaging diseases of cauliflower and other crucifers. In order to investigate the molecular resistance mechanisms and to find the genes related to black rot resistance in cauliflower, a suppression subtractive hybridization (SSH) cDNA library was constructed using resistant line C712 and its susceptible near-isogenic line C731 as tester and driver, respectively. A total of 280 clones were obtained from the library by reverse northern blotting. Sequencing analysis and homology searching showed that these clones represent 202 unique sequences. The library included many defense/disease-resistant related genes, such as plant defensin gene PDF1.2, lipid transfer protein, thioredoxin h. Gene expression profiles of 12 genes corresponding to different functional categories were monitored by real-time RT-PCR. The results showed that the expression induction of these genes in the susceptible line C712 in response to Xcc was quicker and more intense, while in C731 the reaction was delayed and limited. Our results imply that these up-regulated genes might be involved in cauliflower responses against Xcc infection. Information obtained from this study could be used to understand the molecular mechanisms of disease response in cauliflower under Xcc stress.


Plant and Cell Physiology | 2016

Ectopic Expression of DREB Transcription Factor, AtDREB1A, Confers Tolerance to Drought in Transgenic Salvia miltiorrhiza.

Tao Wei; Kejun Deng; Dongqing Liu; Yonghong Gao; Yu Liu; Meiling Yang; Lipeng Zhang; Xuelian Zheng; Chunguo Wang; Wenqin Song; Chengbin Chen; Yong Zhang

Drought decreases crop productivity more than any other type of environmental stress. Transcription factors (TFs) play crucial roles in regulating plant abiotic stress responses. The Arabidopsis thaliana gene DREB1A/CBF3, encoding a stress-inducible TF, was introduced into Salvia miltiorrhiza Ectopic expression of AtDREB1A resulted in increased drought tolerance, and transgenic lines had higher relative water content and Chl content, and exhibited an increased photosynthetic rate when subjected to drought stress. AtDREB1A transgenic plants generally displayed lower malondialdehyde (MDA), but higher superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities under drought stress. In particular, plants with ectopic AtDREB1A expression under the control of the stress-induced RD29A promoter exhibited more tolerance to drought compared with p35S::AtDREB1A transgenic plants, without growth inhibition or phenotypic aberrations. Differential gene expression profiling of wild-type and pRD29A::AtDREB1A transgenic plants following drought stress revealed that the expression levels of various genes associated with the stress response, photosynthesis, signaling, carbohydrate metabolism and protein protection were substantially higher in transgenic plants. In addition, the amount of salvianolic acids and tanshinones was significantly elevated in AtDREB1A transgenic S. miltiorrhiza roots, and most of the genes in the related biosynthetic pathways were up-regulated. Together, these results demonstrated that inducing the expression of a TF can effectively regulate multiple genes in the stress response pathways and significantly improve the resistance of plants to abiotic stresses. Our results also suggest that genetic manipulation of a TF can improve production of valuable secondary metabolites by regulating genes in associated pathways.


Plant and Cell Physiology | 2013

LaAP2L1, a Heterosis-Associated AP2/EREBP Transcription Factor of Larix, Increases Organ Size and Final Biomass by Affecting Cell Proliferation in Arabidopsis

Ai Li; Yanan Zhou; Chuan Jin; Wenqin Song; Chengbin Chen; C. G. Wang

In Larix and in some crops, heterosis is prevalent and has been widely used in breeding to produce excellent varieties. However, the molecular basis of heterosis in Larix remains ambiguous. LaAP2L1, a member of the AP2/EREBP transcription factor family, has been suggested to be involved in heterosis in Larix hybrids. Here, the function and regulation of LaAP2L1 were further explored. Overexpression of LaAP2L1 led to markedly enlarged organs and heterosis-like traits in Arabidopsis. Fresh weight of leaves was almost twice as great as in vector controls. Likewise, seed yield of 35S::LaAP2L1 individual plants was >200% greater than that of control plants. The enlarged organs and heterosis-like traits displayed by 35S::LaAP2L1 plants were mainly due to enhanced cell proliferation and prolonged growth duration. At the molecular level, LaAP2L1 upregulated the expression of ANT, EBP1, and CycD3;1 and inhibited the expression of ARGOS in 35S::LaAP2L1 plants, suggesting an important molecular role of LaAP2L1 in regulating plant organ development. These findings provide new insights into the formation of heterosis in woody plants and suggest that LaAP2L1 has potential applications in breeding high-yielding crops and energy plants. In addition, 50 AP2/EREBP transcription factors, including LaAP2L1, in Larix were identified by transcriptome sequencing, and phylogenetic analysis was conducted. This provided information that will be important in further revealing the functions of these transcription factors.


Plant Cell Tissue and Organ Culture | 2014

Characteristics of cytosine methylation status and methyltransferase genes in the early development stage of cauliflower (Brassica oleracea L. var. botrytis)

Hui Li; Meijuan Geng; Qian Liu; Chuan Jin; Qingli Zhang; Chengbin Chen; Wenqin Song; Chunguo Wang

DNA methylation is one of the most important epigenetic modifications involved in the development and differentiation in plants. Hypocotyl and cotyledon are the two major tissues of cauliflower (Brassica oleracea L. var. botrytis) seedlings. Both tissues show significantly different tissue specificity and regenerative abilities in vitro. However, the characteristics of DNA methylation modification and its roles in regulating the organ development in cauliflower remain largely unknown. In the present study, the DNA methylation status between the hypocotyl and cotyledon of cauliflower seedlings were analyzed. The results indicated that although the hypocotyl and cotyledon of cauliflower seedlings share the same genome, the genomic DNA methylation levels and patterns at CCGG sites were different. Compared with the cotyledon, the hypocotyl showed higher DNA methylation level, and more loci showing methylation pattern adjustments were also discovered. Twelve loci with changes of DNA methylation patterns were further explored. The quantitative expression analysis indicated that eight out of twelve sequenced fragments showed differential expression between the hypocotyl and cotyledon, of which the expression of six sequences was identified to be negative correlation with their DNA methylation status. In addition, three main DNA methyltransferase genes MET1, CMT3 and DRM were first explored in cauliflower. The results indicated that the expression of these three genes was closely associated with the different DNA methylation status in the hypocotyl and cotyledon. These findings provided more information to further explore the roles of DNA methylation modification in tissue differentiation and development of cauliflower.


Molecular Biology Reports | 2010

CD1d gene is a target for a novel amplicon at 1q22–23.1 in human hepatocellular carcinoma

Shi-Guang Zhang; Wenqin Song; Ying-Tang Gao; Bin Yang; Zhi Du

Genome copy number variation (CNV) is one of the mechanisms to regulate the expression level of genes which contributes to the development and progression of cancer. In order to investigate the regions of high-level amplification and potential target genes within these amplicons in hepatocellular carcinoma (HCC), we analyzed HCC cell line (TJ3ZX-01) for CNV regions at the whole genome level using GeneChip Human Mapping 500K array, and also examined the relative copy number and expression levels of the related genes at candidate amplicons in 41 HCC tissues via real-time fluorescence quantitative PCR methods. Through analysis of sequence tag site (STS) markers by quantitative PCR, The two candidate amplicons at 1q found by SNP array were shown to occur in 56.1% (23/41) HCC samples at 1q21 and 80.5% (33/41) at 1q22–23.1. Wilcoxon signed rank test showed expression of CD1d, which located at amplicon of 1q22–23.1 increased significantly within tumor tissues compared with paired nontumor tissues. Our study provides evidences that a novel, high-level amplicon at 1q22–23.1 occurs in both HCC cell line and tissues. CD1d is a potential target for this amplicon in HCC. The up-regulation of CD1d may be used as a novel molecular signature for diagnosis and prognosis of HCC.


Frontiers in Plant Science | 2017

Genome-Wide Identification of AP2/ERF Transcription Factors in Cauliflower and Expression Profiling of the ERF Family under Salt and Drought Stresses

Hui Li; Yu Wang; Mei Wu; Lihong Li; Cong Li; Zhanpin Han; Jiye Yuan; Chengbin Chen; Wenqin Song; Chunguo Wang

The AP2/ERF transcription factors (TFs) comprise one of the largest gene superfamilies in plants. These TFs perform vital roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, 171 AP2/ERF TFs were identified in cauliflower (Brassica oleracea L. var. botrytis), one of the most important horticultural crops in Brassica. Among these TFs, 15, 9, and 1 TFs were classified into the AP2, RAV, and Soloist family, respectively. The other 146 TFs belong to ERF family, which were further divided into the ERF and DREB subfamilies. The ERF subfamily contained 91 TFs, while the DREB subfamily contained 55 TFs. Phylogenetic analysis results indicated that the AP2/ERF TFs can be classified into 13 groups, in which 25 conserved motifs were confirmed. Some motifs were group- or subgroup- specific, implying that they are significant to the functions of the AP2/ERF TFs of these clades. In addition, 35 AP2/ERF TFs from the 13 groups were selected randomly and then used for expression pattern analysis under salt and drought stresses. The majority of these AP2/ERF TFs exhibited positive responses to these stress conditions. In specific, Bra-botrytis-ERF054a, Bra-botrytis-ERF056, and Bra-botrytis-CRF2a demonstrated rapid responses. By contrast, six AP2/ERF TFs were showed to delay responses to both stresses. The AP2/ERF TFs exhibiting specific expression patterns under salt or drought stresses were also confirmed. Further functional analysis indicated that ectopic overexpression of Bra-botrytis-ERF056 could increase tolerance to both salt and drought treatments. These findings provide new insights into the AP2/ERF TFs present in cauliflower, and offer candidate AP2/ERF TFs for further studies on their roles in salt and drought stress tolerance.


Frontiers in Plant Science | 2017

Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen

Hui Li; Yu Wang; Mei Wu; Lihong Li; Chuan Jin; Qingli Zhang; Chengbin Chen; Wenqin Song; Chunguo Wang

Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli (Brassica oleracea var. italica) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.


Frontiers in Plant Science | 2017

Identification of MsHsp20 Gene Family in Malus sieversii and Functional Characterization of MsHsp16.9 in Heat Tolerance

Meiling Yang; Yunxiu Zhang; Huanhuan Zhang; Hongbin Wang; Tao Wei; Shiyou Che; Lipeng Zhang; Baoquan Hu; Hong Long; Wenqin Song; Weiwei Yu; Guorong Yan

Heat shock proteins (Hsps) are common molecular chaperones present in all plants that accumulate in response to abiotic stress. Small heat shock proteins (sHsps) play important roles in alleviating diverse abiotic stresses, especially heat stress. However, very little is known about the MsHsp20 gene family in the wild apple Malus sieversii, a precious germplasm resource with excellent resistance characteristics. In this study, 12 putative M. sieversii Hsp20 genes were identified from RNA-Seq data and analyzed in terms of gene structure and phylogenetic relationships. A new Hsp20 gene, MsHsp16.9, was cloned and its function studied in response to stress. MsHsp16.9 expression was strongly induced by heat, and transgenic Arabidopsis plants overexpressing MsHsp16.9 displayed improved heat resistance, enhanced antioxidant enzyme activity, and decreased peroxide content. Overexpression of MsHsp16.9 did not alter the growth or development under normal conditions, or the hypersensitivity to exogenous ABA. Gene expression analysis indicated that MsHsp16.9 mainly modulates the expression of proteins involved in antioxidant enzyme synthesis, as well as ABA-independent stress signaling in 35S:MsHsp16.9-L11. However, MsHsp16.9 could activate ABA-dependent signaling pathways in all transgenic plants. Additionally, MsHsp16.9 may function alongside AtHsp70 to maintain protein homeostasis and protect against cell damage. Our results suggest that MsHsp16.9 is a protein chaperone that positively regulates antioxidant enzyme activity and ABA-dependent and independent signaling pathway to attenuate plant responses to severe stress. Transgenic plants exhibited luxuriant growth in high temperature environments.


Planta | 2014

Genome-wide identification and characterization of miRNAs in the hypocotyl and cotyledon of cauliflower (Brassica oleracea L. var. botrytis) seedlings

Meijuan Geng; Hui Li; Chuan Jin; Qian Liu; Chengbin Chen; Wenqin Song; Chunguo Wang

MicroRNAs (miRNAs) are a class of small endogenous, non-coding RNAs that have key regulatory functions in plant growth, development, and other biological processes. Hypocotyl and cotyledon are the two major tissues of cauliflower (Brassica oleracea L. var. botrytis) seedlings. Tissue culture experiments have indicated that the regenerative abilities of these two tissues are significantly different. However, the characterization of miRNAs and their roles in regulating organ development in cauliflower remain unexplored. In the present study, two small RNA libraries were sequenced by Solexa sequencing technology. 99 known miRNAs belonging to 28 miRNA families were identified, in which 6 miRNA families were detected only in Brassicaceae. A total of 162 new miRNA sequences with single nucleotide substitutions corresponding to the known miRNAs, and 32 potentially novel miRNAs were also first discovered. Comparative analysis indicated that 42 of 99 known miRNAs and 17 of 32 novel miRNAs exhibited significantly differential expression between hypocotyl and cotyledon, and the differential expression of several miRNAs was further validated by stem-loop RT-PCR. In addition, 235 targets for 89 known miRNAs and 198 targets for 24 novel miRNAs were predicted, and their functions were further discussed. The expression patterns of several representative targets were also confirmed by qRT-PCR analysis. The results identified that the transcriptional expression patterns of miRNAs were negatively correlated with their targets. These findings gave new insights into the characteristics of miRNAs in cauliflower, and provided important clues to elucidate the roles of miRNAs in the tissue differentiation and development of cauliflower.


International Journal of Molecular Sciences | 2018

Transcriptome Analyses from Mutant Salvia miltiorrhiza Reveals Important Roles for SmGASA4 during Plant Development

Hongbin Wang; Tao Wei; Xia Wang; Lipeng Zhang; Meiling Yang; Li Chen; Wenqin Song; Chunguo Wang; Chengbin Chen

Salvia miltiorrhiza (S. miltiorrhiza) is an important Chinese herb that is derived from the perennial plant of Lamiaceae, which has been used to treat neurasthenic insomnia and cardiovascular disease. We produced a mutant S. miltiorrhiza (MT), from breeding experiments, that possessed a large taproot, reduced lateral roots, and defective flowering. We performed transcriptome profiling of wild type (WT) and MT S. miltiorrhiza using second-generation Illumina sequencing to identify differentially expressed genes (DEGs) that could account for these phenotypical differences. Of the DEGs identified, we investigated the role of SmGASA4, the expression of which was down-regulated in MT plants. SmGASA4 was introduced into Arobidopsis and S. militiorrhiza under the control of a CaMV35S promoter to verify its influence on abiotic stress and S. miltiorrhiza secondary metabolism biosynthesis. SmGASA4 was found to promote flower and root development in Arobidopsis. SmGASA4 was also found to be positively regulated by Gibberellin (GA) and significantly enhanced plant resistance to salt, drought, and paclobutrazol (PBZ) stress. SmGASA4 also led to the up-regulation of the genes involved in salvianolic acid biosynthesis, but inhibited the expression of the genes involved in tanshinone biosynthesis. Taken together, our results reveal SmGASA4 as a promising candidate gene to promote S. miltiorrhiza development.

Collaboration


Dive into the Wenqin Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Li

Tianjin Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ai Li

Tianjin Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge