Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenshuo Xu is active.

Publication


Featured researches published by Wenshuo Xu.


ACS Nano | 2016

Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown WS2 With Graphene Electrodes

Haijie Tan; Ye Fan; Yingqiu Zhou; Qu Chen; Wenshuo Xu; Jamie H. Warner

In this report, graphene (Gr) is used as a 2D electrode and monolayer WS2 as the active semiconductor in ultrathin photodetector devices. All of the 2D materials are grown by chemical vapor deposition (CVD) and thus pose as a viable route to scalability. The monolayer thickness of both electrode and semiconductor gives these photodetectors ∼2 nm thickness. We show that graphene is different to conventional metal (Au) electrodes due to the finite density of states from the Dirac cones of the valence and conduction bands, which enables the photoresponsivity to be modulated by electrostatic gating and light input control. We demonstrate lateral Gr-WS2-Gr photodetectors with photoresponsivities reaching 3.5 A/W under illumination power densities of 2.5 × 10(7) mW/cm(2). The performance of monolayer WS2 is compared to bilayer WS2 in photodetectors and we show that increased photoresponsivity is achieved in the thicker bilayer WS2 crystals due to increased optical absorption. This approach of incorporating graphene electrodes in lateral TMD based devices provides insights on the contact engineering in 2D optoelectronics, which is crucial for the development of high performing ultrathin photodetector arrays for versatile applications.


ACS Nano | 2016

Biexciton Formation in Bilayer Tungsten Disulfide

Zhengyu He; Wenshuo Xu; Yingqiu Zhou; Xiaochen Wang; Yuewen Sheng; Youmin Rong; Shaoqiang Guo; Junying Zhang; Jason M. Smith; Jamie H. Warner

Monolayer transition metal dichalcogenides (TMDs) are direct band gap semiconductors, and their 2D structure results in large binding energies for excitons, trions, and biexcitons. The ability to explore many-body effects in these monolayered structures has made them appealing for future optoelectronic and photonic applications. The band structure changes for bilayer TMDs with increased contributions from indirect transitions, and this has limited similar in-depth studies of biexcitons. Here, we study biexciton emission in bilayer WS2 grown by chemical vapor deposition as a function of temperature. A biexciton binding energy of 36 ±4 meV is measured in the as-grown bilayer WS2 containing 0.4% biaxial strain as determined by Raman spectroscopy. The biexciton emission was difficult to detect when the WS2 was transferred to another substrate to release the stain. Density functional theory calculations show that 0.4% of tensile strain lowers the direct band gap by about 55 meV without significant change to the indirect band gap, which can cause an increase in the quantum yield of direct exciton transitions and the emission from biexcitons formed by two direct gap excitons. We find that the biexciton emission decreases dramatically with increased temperature due to the thermal dissociation, with an activation energy of 26 ± 5 meV. These results show how strain can be used to tune the many-body effects in bilayered TMD materials and extend the photonic applications beyond pure monolayer systems.


ACS Nano | 2016

Revealing Defect-State Photoluminescence in Monolayer WS2 by Cryogenic Laser Processing

Zhengyu He; Xiaochen Wang; Wenshuo Xu; Yingqiu Zhou; Yuewen Sheng; Youmin Rong; Jason M. Smith; Jamie H. Warner

Understanding the stability of monolayer transition metal dichalcogenides in atmospheric conditions has important consequences for their handling, life-span, and utilization in applications. We show that cryogenic photoluminescence spectroscopy (PL) is a highly sensitive technique to the detection of oxidation induced degradation of monolayer tungsten disulfide (WS2) caused by exposure to ambient conditions. Although long-term exposure to atmospheric conditions causes massive degradation from oxidation that is optically visible, short-term exposure produces no obvious changes to the PL or Raman spectra measured at either room temperature or even cryogenic environment. Laser processing was employed to remove the surface adsorbents, which enables the defect states to be detected via cryogenic PL spectroscopy. Thermal cycling to room temperature and back down to 77 K shows the process is reversible. We also monitor the degradation process of WS2 using this method, which shows that the defect related peak can be observed after one month aging in ambient conditions.


ACS Applied Materials & Interfaces | 2017

Photoluminescence Segmentation within Individual Hexagonal Monolayer Tungsten Disulfide Domains Grown by Chemical Vapor Deposition

Yuewen Sheng; Xiaochen Wang; Kazunori Fujisawa; Siqi Ying; Ana Laura Elías; Zhong Lin; Wenshuo Xu; Yingqiu Zhou; Alexander M. Korsunsky; Harish Bhaskaran; Mauricio Terrones; Jamie H. Warner

We show that hexagonal domains of monolayer tungsten disulfide (WS2) grown by chemical vapor deposition (CVD) with powder precursors can have discrete segmentation in their photoluminescence (PL) emission intensity, forming symmetric patterns with alternating bright and dark regions. Two-dimensional maps of the PL reveal significant reduction within the segments associated with the longest sides of the hexagonal domains. Analysis of the PL spectra shows differences in the exciton to trion ratio, indicating variations in the exciton recombination dynamics. Monolayers of WS2 hexagonal islands transferred to new substrates still exhibit this PL segmentation, ruling out local strain in the regions as the dominant cause. High-power laser irradiation causes preferential degradation of the bright segments by sulfur removal, indicating the presence of a more defective region that is higher in oxidative reactivity. Atomic force microscopy (AFM) images of topography and amplitude modes show uniform thickness of the WS2 domains and no signs of segmentation. However, AFM phase maps do show the same segmentation of the domain as the PL maps and indicate that it is caused by some kind of structural difference that we could not clearly identify. These results provide important insights into the spatially varying properties of these CVD-grown transition metal dichalcogenide materials, which may be important for their effective implementation in fast photo sensors and optical switches.


Advanced Materials | 2017

Lateral Graphene‐Contacted Vertically Stacked WS2/MoS2 Hybrid Photodetectors with Large Gain

Haijie Tan; Wenshuo Xu; Yuewen Sheng; Chit Siong Lau; Ye Fan; Qu Chen; Martin Tweedie; Xiaochen Wang; Yingqiu Zhou; Jamie H. Warner

A demonstration is presented of how significant improvements in all-2D photodetectors can be achieved by exploiting the type-II band alignment of vertically stacked WS2 /MoS2 semiconducting heterobilayers and finite density of states of graphene electrodes. The photoresponsivity of WS2 /MoS2 heterobilayer devices is increased by more than an order of magnitude compared to homobilayer devices and two orders of magnitude compared to monolayer devices of WS2 and MoS2 , reaching 103 A W-1 under an illumination power density of 1.7 × 102 mW cm-2 . The massive improvement in performance is due to the strong Coulomb interaction between WS2 and MoS2 layers. The efficient charge transfer at the WS2 /MoS2 heterointerface and long trapping time of photogenerated charges contribute to the observed large photoconductive gain of ≈3 × 104 . Laterally spaced graphene electrodes with vertically stacked 2D van der Waals heterostructures are employed for making high-performing ultrathin photodetectors.


Nano Letters | 2017

Atomically Flat Zigzag Edges in Monolayer MoS2 by Thermal Annealing

Qu Chen; Huashan Li; Wenshuo Xu; Shanshan Wang; Hidetaka Sawada; Christopher S. Allen; Angus I. Kirkland; Jeffrey C. Grossman; Jamie H. Warner

The edges of 2D materials show novel electronic, magnetic, and optical properties, especially when reduced to nanoribbon widths. Therefore, methods to create atomically flat edges in 2D materials are essential for future exploitation. Atomically flat edges in 2D materials are found after brittle fracture or when electrically biasing, but a simple scalable approach for creating atomically flat periodic edges in monolayer 2D transition metal dichalcogenides has yet to be realized. Here, we show how heating monolayer MoS2 to 800 °C in vacuum produces atomically flat Mo terminated zigzag edges in nanoribbons. We study this at the atomic level using an ultrastable in situ heating holder in an aberration-corrected transmission electron microscope and discriminating Mo from S at the edge, revealing unique Mo terminations for all zigzag orientations that remain stable and atomically flat when cooling back to room temperature. Highly faceted MoS2 nanoribbon constrictions are produced with Mo rich edge structures that have theoretically predicted spin separated transport channels, which are promising for spin logic applications.


ACS Omega | 2017

Atomic Structure and Dynamics of Defects in 2D MoS2 Bilayers

Si Zhou; Shanshan Wang; Huashan Li; Wenshuo Xu; Chuncheng Gong; Jeffrey C. Grossman; Jamie H. Warner

We present a detailed atomic-level study of defects in bilayer MoS2 using aberration-corrected transmission electron microscopy at an 80 kV accelerating voltage. Sulfur vacancies are found in both the top and bottom layers in 2H- and 3R-stacked MoS2 bilayers. In 3R-stacked bilayers, sulfur vacancies can migrate between layers but more preferably reside in the (Mo–2S) column rather than the (2S) column, indicating more complex vacancy production and migration in the bilayer system. As the point vacancy number increases, aggregation into larger defect structures occurs, and this impacts the interlayer stacking. Competition between compression in one layer from the loss of S atoms and the van der Waals interlayer force causes much less structural deformations than those in the monolayer system. Sulfur vacancy lines neighboring in top and bottom layers introduce less strain compared to those staggered in the same layer. These results show how defect structures in multilayered two-dimensional materials differ from their monolayer form.


Small | 2018

Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer

Wenshuo Xu; Daichi Kozawa; Yu Liu; Yuewen Sheng; Ke Wei; Volodymyr B. Koman; Shanshan Wang; Xiaochen Wang; Tian Jiang; Michael S. Strano; Jamie H. Warner

The 2D semiconductor monolayer transition metal dichalcogenides, WS2 and MoS2 , are grown by chemical vapor deposition (CVD) and assembled by sequential transfer into vertical layered heterostructures (VLHs). Insulating hBN, also produced by CVD, is utilized to control the separation between WS2 and MoS2 by adjusting the layer number, leading to fine-scale tuning of the interlayer interactions within the VLHs. The interlayer interactions are studied by photoluminescence (PL) spectroscopy and are demonstrated to be highly sensitive to the input excitation power. For thin hBN separators (one to two layers), the total PL emission switches from quenching to enhancement by increasing the laser power. Femtosecond broadband transient absorption measurements demonstrate that the increase in PL quantum yield results from Förster energy transfer from MoS2 to WS2 . The PL signal is further enhanced at cryogenic temperatures due to the suppressed nonradiative decay channels. It is shown that (4 ± 1) layers of hBN are optimum for obtaining PL enhancement in the VLHs. Increasing thickness beyond this causes the enhancement factor to diminish, with the WS2 and MoS2 then behaving as isolated noninteracting monolayers. These results indicate how controlling the exciton generation rate influences energy transfer and plays an important role in the properties of VLHs.


ACS Nano | 2017

Epitaxial Templating of Two-Dimensional Metal Chloride Nanocrystals on Monolayer Molybdenum Disulfide

Shanshan Wang; Huashan Li; Junying Zhang; Shaoqiang Guo; Wenshuo Xu; Jeffrey C. Grossman; Jamie H. Warner

We demonstrate the formation of ionic metal chloride (CuCl) two-dimensional (2D) nanocrystals epitaxially templated on the surface of monolayer molybdenum disulfide (MoS2). These 2D CuCl nanocrystals are single atomic planes from a nonlayered bulk CuCl structure. They are stabilized as a 2D monolayer on the surface of the MoS2 through interactions with the uniform periodic surface of the MoS2. The heterostructure 2D system is studied at the atomic level using aberration-corrected transmission electron microscopy at 80 kV. Dynamics of discrete rotations of the CuCl nanocrystals are observed, maintaining two types of preferential alignments to the MoS2 lattice, confirming that the strong interlayer interactions drive the stable CuCl structure. Strain maps are produced from displacement maps and used to track real-time variations of local atomic bonding and defect production. Density functional theory calculations interpret the formation of two types of energetically advantageous commensurate superlattices via strong chemical bonds at interfaces and predict their corresponding electronic structures. These results show how vertical heterostructured 2D nanoscale systems can be formed beyond the simple assembly of preformed layered materials and provide indications about how different 2D components and their interfacial coupling mode could influence the overall property of the heterostructures.


Nanotechnology | 2018

Blister-based-laser-induced-forward-transfer: A non-contact, dry laser-based transfer method for nanomaterials

Nathan Goodfriend; S Y Heng; Oleg Nerushev; Andrei Gromov; Alexander V. Bulgakov; Mitsuhiro Okada; Wenshuo Xu; Ryo Kitaura; Jamie H. Warner; Hisanori Shinohara; Eleanor E. B. Campbell

We show that blister-based-laser-induced forward-transfer can be used to cleanly desorb and transfer nano- and micro-scale particles between substrates without exposing the particles to the laser radiation or to any chemical treatment that could damage the intrinsic electronic and optical properties of the materials. The technique uses laser pulses to induce the rapid formation of a blister on a thin metal layer deposited on glass via ablation at the metal/glass interface. Femtosecond laser pulses are advantageous for forming beams of molecules or small nanoparticles with well-defined velocity and narrow angular distributions. Both fs and ns laser pulses can be used to cleanly transfer larger nanoparticles including relatively fragile monolayer 2D transition metal dichalcogenide crystals and for direct transfer of nanoparticles from chemical vapour deposition growth substrates, although the mechanisms for inducing blister formation are different.

Collaboration


Dive into the Wenshuo Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey C. Grossman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Si Zhou

University of Oxford

View shared research outputs
Top Co-Authors

Avatar

Qu Chen

University of Oxford

View shared research outputs
Top Co-Authors

Avatar

Huashan Li

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge