Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenwei Huang is active.

Publication


Featured researches published by Wenwei Huang.


Nature Medicine | 2016

Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen

Miao Xu; Emily M. Lee; Zhexing Wen; Yichen Cheng; Wei Kai Huang; Xuyu Qian; Julia Tcw; Jennifer Kouznetsova; Sarah C. Ogden; Christy Hammack; Fadi Jacob; Ha Nam Nguyen; Misha Itkin; Catherine Hanna; Paul Shinn; Chase Allen; Samuel G. Michael; Anton Simeonov; Wenwei Huang; Kimberly M. Christian; Alison Goate; Kristen J. Brennand; Ruili Huang; Menghang Xia; Guo Li Ming; Wei Zheng; Hongjun Song; Hengli Tang

In response to the current global health emergency posed by the Zika virus (ZIKV) outbreak and its link to microcephaly and other neurological conditions, we performed a drug repurposing screen of ∼6,000 compounds that included approved drugs, clinical trial drug candidates and pharmacologically active compounds; we identified compounds that either inhibit ZIKV infection or suppress infection-induced caspase-3 activity in different neural cells. A pan-caspase inhibitor, emricasan, inhibited ZIKV-induced increases in caspase-3 activity and protected human cortical neural progenitors in both monolayer and three-dimensional organoid cultures. Ten structurally unrelated inhibitors of cyclin-dependent kinases inhibited ZIKV replication. Niclosamide, a category B anthelmintic drug approved by the US Food and Drug Administration, also inhibited ZIKV replication. Finally, combination treatments using one compound from each category (neuroprotective and antiviral) further increased protection of human neural progenitors and astrocytes from ZIKV-induced cell death. Our results demonstrate the efficacy of this screening strategy and identify lead compounds for anti-ZIKV drug development.


Proceedings of the National Academy of Sciences of the United States of America | 2014

High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells.

Lesley A. Mathews Griner; Rajarshi Guha; Paul Shinn; Ryan M. Young; Jonathan M. Keller; Dongbo Liu; Ian S. Goldlust; Adam Yasgar; Crystal McKnight; Matthew B. Boxer; Damien Y. Duveau; Jian-kang Jiang; Sam Michael; Tim Mierzwa; Wenwei Huang; Martin J. Walsh; Bryan T. Mott; Paresma R. Patel; William Leister; David J. Maloney; Christopher A. LeClair; Ganesha Rai; Ajit Jadhav; Brian D. Peyser; Christopher P. Austin; Scott E. Martin; Anton Simeonov; Marc Ferrer; Louis M. Staudt; Craig J. Thomas

Significance The treatment of cancer is highly reliant on drug combinations. Next-generation, targeted therapeutics are demonstrating interesting single-agent activities in clinical trials; however, the discovery of companion drugs through iterative clinical trial-and-error is not a tenable mechanism to prioritize clinically important combinations for these agents. Herein we describe the results of a large, high-throughput combination screen of the Bruton’s tyrosine kinase inhibitor ibrutinib versus a library of nearly 500 approved and investigational drugs. Multiple ibrutinib combinations were discovered through this study that can be prioritized for clinical examination. The clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug–drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations. We use this platform to define potential therapeutic combinations for the activated B-cell–like subtype (ABC) of diffuse large B-cell lymphoma (DLBCL). We identify drugs with synergy, additivity, and antagonism with the Bruton’s tyrosine kinase inhibitor ibrutinib, which targets the chronic active B-cell receptor signaling that characterizes ABC DLBCL. Ibrutinib interacted favorably with a wide range of compounds, including inhibitors of the PI3K-AKT-mammalian target of rapamycin signaling cascade, other B-cell receptor pathway inhibitors, Bcl-2 family inhibitors, and several components of chemotherapy that is the standard of care for DLBCL.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110δ inhibition as a potential therapeutic strategy

Amanda J. Law; Yanhong Wang; Yoshitatsu Sei; Patricio O'Donnell; Patrick T. Piantadosi; Francesco Papaleo; Richard E. Straub; Wenwei Huang; Craig J. Thomas; Radhakrishna Vakkalanka; Aaron D. Besterman; Barbara K. Lipska; Thomas M. Hyde; Paul J. Harrison; Joel E. Kleinman; Daniel R. Weinberger

Neuregulin 1 (NRG1) and ErbB4, critical neurodevelopmental genes, are implicated in schizophrenia, but the mediating mechanisms are unknown. Here we identify a genetically regulated, pharmacologically targetable, risk pathway associated with schizophrenia and with ErbB4 genetic variation involving increased expression of a PI3K-linked ErbB4 receptor (CYT-1) and the phosphoinositide 3-kinase subunit, p110δ (PIK3CD). In human lymphoblasts, NRG1-mediated phosphatidyl-inositol,3,4,5 triphosphate [PI(3,4,5)P3] signaling is predicted by schizophrenia-associated ErbB4 genotype and PIK3CD levels and is impaired in patients with schizophrenia. In human brain, the same ErbB4 genotype again predicts increased PIK3CD expression. Pharmacological inhibition of p110δ using the small molecule inhibitor, IC87114, blocks the effects of amphetamine in a mouse pharmacological model of psychosis and reverses schizophrenia-related phenotypes in a rat neonatal ventral hippocampal lesion model. Consistent with these antipsychotic-like properties, IC87114 increases AKT phosphorylation in brains of treated mice, implicating a mechanism of action. Finally, in two family-based genetic studies, PIK3CD shows evidence of association with schizophrenia. Our data provide insight into a mechanism of ErbB4 association with schizophrenia; reveal a previously unidentified biological and disease link between NRG1-ErbB4, p110δ, and AKT; and suggest that p110δ is a previously undescribed therapeutic target for the treatment of psychiatric disorders.


Biochemistry | 2009

Identification of Aminothienopyridazine Inhibitors of Tau Assembly by Quantitative High-Throughput Screening

Alex Crowe; Wenwei Huang; Carlo Ballatore; Ronald L Johnson; Anne-Marie L. Hogan; Ruili Huang; Jennifer Wichterman; Joshua G. McCoy; Donna M. Huryn; Douglas S. Auld; Amos B. Smith; James Inglese; John Q. Trojanowski; Christopher P. Austin; Kurt R. Brunden; Virginia M.-Y. Lee

Inclusions comprised of fibrils of the microtubule- (MT-) associated protein tau are found in the brains of those with Alzheimers disease (AD) and other neurodegenerative tauopathies. The pathology that is observed in these diseases is believed to result from the formation of toxic tau oligomers or fibrils and/or from the loss of normal tau function due to its sequestration into insoluble deposits. Hence, small molecules that prevent tau oligomerization and/or fibrillization might have therapeutic value. Indeed, examples of such compounds have been published, but nearly all have properties that render them unsuitable as drug candidates. For these reasons, we conducted quantitative high-throughput screening (qHTS) of approximately 292000 compounds to identify drug-like inhibitors of tau assembly. The fibrillization of a truncated tau fragment that contains four MT-binding domains was monitored in an assay that employed complementary thioflavin T fluorescence and fluorescence polarization methods. Previously described classes of inhibitors as well as new scaffolds were identified, including novel aminothienopyridazines (ATPZs). A number of ATPZ analogues were synthesized, and structure-activity relationships were defined. Further characterization of representative ATPZ compounds showed they do not interfere with tau-mediated MT assembly, and they are significantly more effective at preventing the fibrillization of tau than the Abeta(1-42) peptide which forms AD senile plaques. Thus, the ATPZ molecules described here represent a novel class of tau assembly inhibitors that merit further development for testing in animal models of AD-like tau pathology.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice

Susanne Neumann; Wenwei Huang; Steve Titus; Gerd Krause; Gunnar Kleinau; Anna Teresa Alberobello; Wei Zheng; Noel Southall; James Inglese; Christopher P. Austin; Francesco S. Celi; Oksana Gavrilova; Craig J. Thomas; Bruce M. Raaka; Marvin C. Gershengorn

Seven-transmembrane-spanning receptors (7TMRs) are prominent drug targets. However, small-molecule ligands for 7-transmembrane-spanning receptors for which the natural ligands are large, heterodimeric glycoprotein hormones, like thyroid-stimulating hormone (TSH; thyrotropin), have only recently been reported, and none are approved for human use. We have used quantitative high-throughput screening to identify a small-molecule TSH receptor (TSHR) agonist that was modified to produce a second agonist with increased potency. We show that these agonists are highly selective for human TSHR versus other glycoprotein hormone receptors and interact with the receptors serpentine domain. A binding pocket within the transmembrane domain was defined by docking into a TSHR homology model and was supported by site-directed mutagenesis. In primary cultures of human thyrocytes, both TSH and the agonists increase mRNA levels for thyroglobulin, thyroperoxidase, sodium iodide symporter, and deiodinase type 2, and deiodinase type 2 enzyme activity. Moreover, oral administration of the agonist stimulated thyroid function in mice, resulting in increased serum thyroxine and thyroidal radioiodide uptake. Thus, we discovered a small molecule that activates human TSHR in vitro, is orally active in mice, and could be a lead for development of drugs to use in place of recombinant human TSH in patients with thyroid cancer.


Scientific Reports | 2015

Chemical signatures and new drug targets for gametocytocidal drug development

Wei Sun; Takeshi Tanaka; Crystal T. Magle; Wenwei Huang; Noel Southall; Ruili Huang; Seameen Dehdashti; John C. McKew; Kim C. Williamson; Wei Zheng

Control of parasite transmission is critical for the eradication of malaria. However, most antimalarial drugs are not active against P. falciparum gametocytes, responsible for the spread of malaria. Consequently, patients can remain infectious for weeks after the clearance of asexual parasites and clinical symptoms. Here we report the identification of 27 potent gametocytocidal compounds (IC50 < 1 μM) from screening 5,215 known drugs and compounds. All these compounds were active against three strains of gametocytes with different drug sensitivities and geographical origins, 3D7, HB3 and Dd2. Cheminformatic analysis revealed chemical signatures for P. falciparum sexual and asexual stages indicative of druggability and suggesting potential targets. Torin 2, a top lead compound (IC50 = 8 nM against gametocytes in vitro), completely blocked oocyst formation in a mouse model of transmission. These results provide critical new leads and potential targets to expand the repertoire of malaria transmission-blocking reagents.


Neurobiology of Disease | 2007

Differentiating Alzheimer disease-associated aggregates with small molecules

Nicolette S. Honson; Ronald L Johnson; Wenwei Huang; James Inglese; Christopher P. Austin; Jeff Kuret

Alzheimer disease is diagnosed postmortem by the density and spatial distribution of beta-amyloid plaques and tau-bearing neurofibrillary tangles. The major protein component of each lesion adopts cross-beta-sheet conformation capable of binding small molecules with submicromolar affinity. In many cases, however, Alzheimer pathology overlaps with Lewy body disease, characterized by the accumulation of a third cross-beta-sheet forming protein, alpha-synuclein. To determine the feasibility of distinguishing tau aggregates from beta-amyloid and alpha-synuclein aggregates with small molecule probes, a library containing 72,455 small molecules was screened for antagonists of tau-aggregate-mediated changes in Thioflavin S fluorescence, followed by secondary screens to distinguish the relative affinity for each substrate protein. Results showed that >10-fold binding selectivity among substrates could be achieved, with molecules selective for tau aggregates containing at least three aromatic or rigid moieties connected by two rotatable bonds.


Stem Cells Translational Medicine | 2015

High-Throughput Screening to Identify Compounds That Increase Fragile X Mental Retardation Protein Expression in Neural Stem Cells Differentiated From Fragile X Syndrome Patient-Derived Induced Pluripotent Stem Cells

Daman Kumari; Manju Swaroop; Noel Southall; Wenwei Huang; Wei Zheng; Karen Usdin

Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time‐resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536‐well plate format. Using neural stem cells differentiated from an FXS patient‐derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient‐derived neural stem cells can be used in a high‐throughput format to identify better lead compounds for FXS drug development.


Endocrinology | 2010

A Small Molecule Inverse Agonist for the Human Thyroid-Stimulating Hormone Receptor

Susanne Neumann; Wenwei Huang; Elena Eliseeva; Steve Titus; Craig J. Thomas; Marvin C. Gershengorn

Small molecule inverse agonists for the TSH receptor (TSHR) may be used as probes of the role of basal (or agonist-independent or constitutive) signaling and may have therapeutic potential as orally active drugs to inhibit basal signaling in patients with thyroid cancer and in some patients with hyperthyroidism. We describe the first small-molecule ligand [1;2-(3-((2,6-dimethylphenoxy)methyl)-4-methoxyphenyl)-3-(furan-2-ylmethyl)-2,3-dihydroquinazolin-4(1H)-one] that exhibits inverse agonist properties at TSHR. 1 inhibits basal and TSH-stimulated signaling, measured as cAMP production, by TSHRs in HEK-EM 293 cells stably expressing wild-type TSHRs; the antagonism of TSH-mediated signaling is competitive. 1 also inhibits basal signaling by wild-type TSHRs, and four constitutively active mutants of TSHR expressed transiently in HEK-EM 293 cells. 1 was active under more physiologically relevant conditions in primary cultures of human thyrocytes expressing endogenous TSHRs where it inhibited basal levels of mRNA transcripts for thyroglobulin, thyroperoxidase, sodium iodide symporter, and TSHR. These data serve as proof of principle that small, drug-like molecules can inhibit basal signaling by TSHR. We suggest that this small molecule is a lead compound for the development of higher-potency inverse agonists that can be used as probes of TSHR biology with therapeutic potential.


Journal of Biological Chemistry | 2011

Methylsulfonylnitrobenzoates, a New Class of Irreversible Inhibitors of the Interaction of the Thyroid Hormone Receptor and Its Obligate Coactivators That Functionally Antagonizes Thyroid Hormone

Jong Yeon Hwang; Wenwei Huang; Leggy A. Arnold; Ruili Huang; Ramy R. Attia; Michele C. Connelly; Jennifer Wichterman; Fangyi Zhu; Indre Augustinaite; Christopher P. Austin; James Inglese; Ronald L Johnson; R. Kiplin Guy

Thyroid hormone receptors (TRs) are members of the nuclear hormone receptor (NR) superfamily and regulate development, growth, and metabolism. Upon binding thyroid hormone, TR undergoes a conformational change that allows the release of corepressors and the recruitment of coactivators, which in turn regulate target gene transcription. Although a number of TR antagonists have been developed, most are analogs of the endogenous hormone that inhibit ligand binding. In a screen for inhibitors that block the association of TRβ with steroid receptor coactivator 2 (SRC2), we identified a novel methylsulfonylnitrobenzoate (MSNB)-containing series that blocks this interaction at micromolar concentrations. Here we have studied a series of MSNB analogs and characterized their structure activity relationships. MSNB members do not displace thyroid hormone T3 but instead act by direct displacement of SRC2. MSNB series members are selective for the TR over the androgen, vitamin D, and PPARγ NR members, and they antagonize thyroid hormone-activated transcription action in cells. The methylsulfonylnitro group is essential for TRβ antagonism. Side-chain alkylamine substituents showed better inhibitory activity than arylamine substituents. Mass spectrum analysis suggested that MSNB inhibitors bind irreversibly to Cys-298 within the AF-2 cleft of TRβ to disrupt SRC2 association.

Collaboration


Dive into the Wenwei Huang's collaboration.

Top Co-Authors

Avatar

Noel Southall

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Juan J. Marugan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Erika Englund

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ruili Huang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marvin C. Gershengorn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Susanne Neumann

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christopher P. Austin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ellen Sidransky

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Omid Motabar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Steve Titus

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge