Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weria Pezeshkian is active.

Publication


Featured researches published by Weria Pezeshkian.


ACS Nano | 2017

Mechanism of Shiga Toxin Clustering on Membranes

Weria Pezeshkian; Haifei Gao; Senthil Arumugam; Ulrike Becken; Patricia Bassereau; Jean-Claude Florent; John Hjort Ipsen; Ludger Johannes; Julian C. Shillcock

The bacterial Shiga toxin interacts with its cellular receptor, the glycosphingolipid globotriaosylceramide (Gb3 or CD77), as a first step to entering target cells. Previous studies have shown that toxin molecules cluster on the plasma membrane, despite the apparent lack of direct interactions between them. The precise mechanism by which this clustering occurs remains poorly defined. Here, we used vesicle and cell systems and computer simulations to show that line tension due to curvature, height, or compositional mismatch, and lipid or solvent depletion cannot drive the clustering of Shiga toxin molecules. By contrast, in coarse-grained computer simulations, a correlation was found between clustering and toxin nanoparticle-driven suppression of membrane fluctuations, and experimentally we observed that clustering required the toxin molecules to be tightly bound to the membrane surface. The most likely interpretation of these findings is that a membrane fluctuation-induced force generates an effective attraction between toxin molecules. Such force would be of similar strength to the electrostatic force at separations around 1 nm, remain strong at distances up to the size of toxin molecules (several nanometers), and persist even beyond. This force is predicted to operate between manufactured nanoparticles providing they are sufficiently rigid and tightly bound to the plasma membrane, thereby suggesting a route for the targeting of nanoparticles to cells for biomedical applications.


Nature Communications | 2017

Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair

Theresa Louise Boye; Kenji Maeda; Weria Pezeshkian; Stine Lauritzen Sønder; Swantje Christin Haeger; Volker Gerke; Adam Cohen Simonsen; Jesper Nylandsted

Efficient cell membrane repair mechanisms are essential for maintaining membrane integrity and thus for cell life. Here we show that the Ca2+- and phospholipid-binding proteins annexin A4 and A6 are involved in plasma membrane repair and needed for rapid closure of micron-size holes. We demonstrate that annexin A4 binds to artificial membranes and generates curvature force initiated from free edges, whereas annexin A6 induces constriction force. In cells, plasma membrane injury and Ca2+ influx recruit annexin A4 to the vicinity of membrane wound edges where its homo-trimerization leads to membrane curvature near the edges. We propose that curvature force is utilized together with annexin A6-mediated constriction force to pull the wound edges together for eventual fusion. We show that annexin A4 can counteract various plasma membrane disruptions including holes of several micrometers indicating that induction of curvature force around wound edges is an early key event in cell membrane repair.The role of annexins in cell membrane repair is largely undefined. Here the authors use a model lipid bilayer to show that annexin A4 induces curvature at the membrane free edge and annexin A6 induces constriction force, and find that both annexins are recruited to wound edges in cells and are required for repair.


Soft Matter | 2015

The effects of globotriaosylceramide tail saturation level on bilayer phases

Weria Pezeshkian; Vitaly V. Chaban; Ludger Johannes; Julian C. Shillcock; John Hjort Ipsen; Himanshu Khandelia

Globotriaosylceramide (Gb3) is a glycosphingolipid present in the plasma membrane that is the natural receptor of the bacterial Shiga toxin. The unsaturation level of Gb3 acyl chains has a drastic impact on lipid bilayer properties and phase behaviour, and on many Gb3-related cellular processes. For example: the Shiga toxin B subunit forms tubular invaginations in the presence of Gb3 with an unsaturated acyl chain (U-Gb3), while in the presence of Gb3 with a saturated acyl chain (S-Gb3) such invagination does not occur. We have used all-atom molecular dynamics simulations to investigate the effects of the Gb3 concentration and its acyl chain saturation on the phase behaviour of a mixed bilayer of dioleoylphosphatidylcholine and Gb3. The simulation results show that: (1) the Gb3 acyl chains (longer tails) from one leaflet interdigitate into the opposing leaflet and lead to significant bilayer rigidification and immobilisation of the lipid tails. S-Gb3 can form a highly ordered, relatively immobile phase which is resistant to bending while these changes for U-Gb3 are not significant. (2) At low concentrations of Gb3, U-Gb3 and S-Gb3 have a similar impact on the bilayer reminiscent of the effect of sphingomyelin lipids and (3) At higher Gb3 concentrations, U-Gb3 mixes better with dioleoylphosphatidylcholine than S-Gb3. Our simulations also provide the first molecular level structural model of Gb3 in membranes.


Langmuir | 2017

Membrane Tubulation in Lipid Vesicles Triggered by the Local Application of Calcium Ions

Baharan Ali Doosti; Weria Pezeshkian; Dennis Skjøth Bruhn; John Hjort Ipsen; Himanshu Khandelia; Gavin D. M. Jeffries; Tatsiana Lobovkina

Experimental and theoretical studies on ion-lipid interactions predict that binding of calcium ions to cell membranes leads to macroscopic mechanical effects and membrane remodeling. Herein, we provide experimental evidence that a point source of Ca2+ acting upon a negatively charged membrane generates spontaneous curvature and triggers the formation of tubular protrusions that point away from the ion source. This behavior is rationalized by strong binding of the divalent cations to the surface of the charged bilayer, which effectively neutralizes the surface charge density of outer leaflet of the bilayer. The mismatch in the surface charge density of the two leaflets leads to nonzero spontaneous curvature. We probe this mismatch through the use of molecular dynamics simulations and validate that calcium ion binding to a lipid membrane is sufficient to generate inward spontaneous curvature, bending the membrane. Additionally, we demonstrate that the formed tubular protrusions can be translated along the vesicle surface in a controlled manner by repositioning the site of localized Ca2+ exposure. The findings demonstrate lipid membrane remodeling in response to local chemical gradients and offer potential insights into the cell membrane behavior under conditions of varying calcium ion concentrations.


Trends in Cell Biology | 2018

Clustering on Membranes: Fluctuations and More

Ludger Johannes; Weria Pezeshkian; John Hjort Ipsen; Julian C. Shillcock

Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membranes physical properties contribute to this clustering, in addition to direct protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise from protein-induced perturbation of a membranes fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions.


Cell Reports | 2018

C24 Sphingolipids Govern the Transbilayer Asymmetry of Cholesterol and Lateral Organization of Model and Live-Cell Plasma Membranes

K.C. Courtney; Weria Pezeshkian; Riya Raghupathy; C. Zhang; Angie Darbyson; John Hjort Ipsen; David A. Ford; Himanshu Khandelia; John F. Presley; X. Zha

Mammalian sphingolipids, primarily with C24 or C16 acyl chains, reside in the outer leaflet of the plasma membrane. Curiously, little is known how C24 sphingolipids impact cholesterol and membrane microdomains. Here, we present evidence that C24 sphingomyelin, when placed in the outer leaflet, suppresses microdomains in giant unilamellar vesicles and also suppresses submicron domains in the plasma membrane of HeLa cells. Free energy calculations suggested that cholesterol has a preference for the inner leaflet if C24 sphingomyelin is in the outer leaflet. We indeed observe that cholesterol enriches in the inner leaflet (80%) if C24 sphingomyelin is in the outer leaflet. Similarly, cholesterol primarily resides in the cytoplasmic leaflet (80%) in the plasma membrane of human erythrocytes where C24 sphingolipids are naturally abundant in the outer leaflet. We conclude that C24 sphingomyelin uniquely interacts with cholesterol and regulates the lateral organization in asymmetric membranes, potentially by generating cholesterol asymmetry.


bioRxiv | 2017

C24 sphingolipids play a surprising and central role in governing cholesterol and lateral organization of the live cell plasma membrane

Kevin C. Courtney; Weria Pezeshkian; Riya Raghupathy; Gary Zhang; Angie Darbyson; John Hjort Ipsen; David A. Ford; Himanshu Khandelia; John F. Presley; Xiaohui Zha

Mammalian cell sphingolipids, primarily with C24 and C16 acyl chains, reside in the outer leaflet of the plasma membrane. Curiously, little is known how C24 sphingolipids impact cholesterol and membrane microdomains. Here, we generated giant unilamellar vesicles and live mammalian cells with C24 or C16 sphingomyelin exclusively in the outer leaflet and compared microdomain formation. In giant unilamellar vesicles, we observed that asymmetrically placed C24 sphingomyelin suppresses microdomains. Conversely, C16 sphingomyelin facilitates microdomains. Replacing endogenous sphingolipids with C24 or C16 sphingomyelin in live HeLa cells has a similar impact on microdomains, characterized by FRET between GPI-anchored proteins: C24, but not C16, sphingomyelin suppresses submicron domains in the plasma membrane. Molecular dynamics simulations indicated that, when in the outer leaflet, the acyl chain of C24 sphingomyelin interdigitates into the opposing leaflet, thereby favouring cholesterol in the inner leaflet. We indeed found that cholesterol prefers the inner over the outer leaflet of asymmetric unilamellar vesicles (80/20) when C24 sphingomyelin is in the outer leaflet. However, when C16 sphingomyelin is in the outer leaflet, cholesterol is evenly partitioned between leaflets (50/50). Interestingly, when a mixture of C24/C16 sphingomyelin is in the outer leaflet of unilamellar vesicles, cholesterol still prefers the inner leaflet (80/20). Indeed, in human erythrocyte plasma membrane, where a mixture of C24 and C16 sphingolipids are naturally in the outer leaflet, cholesterol prefers the cytoplasmic leaflet (80/20). Therefore, C24 sphingomyelin uniquely interacts with cholesterol and governs the lateral organization in asymmetric membranes, including the plasma membrane, potentially by generating cholesterol asymmetry. Statement of Significance The plasma membrane bilayer of mammalian cells has distinct phospholipids between the outer and inner leaflet, with sphingolipids exclusively in the outer leaflet. A large portion of mammalian sphingolipids have very long acyl chains (C24). Little is known how C24 sphingolipids function in the outer leaflet. Mutations in the ceramide synthase 2 gene is found to decrease C24. This severely perturbs homeostasis in mice and humans. Here, we investigated unilamellar vesicles and mammalian cells with C24 sphingomyelin exclusively in the outer leaflet. We provide evidence that outer leaflet C24 sphingomyelin suppresses microdomains in model membranes and live cells by partitioning cholesterol into the inner leaflet. We propose that C24 sphingolipids are critical to the function of the plasma membrane.


Scientific Reports | 2018

Annexins induce curvature on free-edge membranes displaying distinct morphologies

Theresa Louise Boye; Jonas Camillus Jeppesen; Kenji Maeda; Weria Pezeshkian; Vita Solovyeva; Jesper Nylandsted; Adam Cohen Simonsen

Annexins are a family of proteins characterized by their ability to bind anionic membranes in response to Ca2+-activation. They are involved in a multitude of cellular functions including vesiculation and membrane repair. Here, we investigate the effect of nine annexins (ANXA1-ANXA7, ANXA11, ANXA13) on negatively charged double supported membrane patches with free edges. We find that annexin members can be classified according to the membrane morphology they induce and matching a dendrogam of the annexin family based on full amino acid sequences. ANXA1 and ANXA2 induce membrane folding and blebbing initiated from membrane structural defects inside patches while ANXA6 induces membrane folding originating both from defects and from the membrane edges. ANXA4 and ANXA5 induce cooperative roll-up of the membrane starting from free edges, producing large rolls. In contrast, ANXA3 and ANXA13 roll the membrane in a fragmented manner producing multiple thin rolls. In addition to rolling, ANXA7 and ANXA11 are characterized by their ability to form fluid lenses localized between the membrane leaflets. A shared feature necessary for generating these morphologies is the ability to induce membrane curvature on free edged anionic membranes. Consequently, induction of membrane curvature may be a significant property of the annexin protein family that is important for their function.


Journal of Chemical Theory and Computation | 2018

Faster simulations with a 5 fs timestep for lipids in the CHARMM forcefield

Karina Olesen; Neha Awasthi; Dennis Skjøth Bruhn; Weria Pezeshkian; Himanshu Khandelia

The performance of all-atom molecular dynamics simulations is limited by an integration time step of 2 fs, which is needed to resolve the fastest degrees of freedom in the system, namely, the vibration of bonds and angles involving hydrogen atoms. The virtual interaction sites (VIS) method replaces hydrogen atoms by massless virtual interaction sites to eliminate these degrees of freedom while keeping intact nonbonded interactions and the explicit treatment of hydrogen atoms. We have modified the existing VIS algorithm for most lipids in the popular CHARMM36 force field by increasing the hydrogen atom masses at regular intervals in the lipid acyl chains and obtained lipid properties and pore formation free energies in very good agreement with those calculated in simulations without VIS. Our modified VIS scheme enables a 5 fs time step resulting in a significant performance gain for all-atom simulations of membranes. The method has the potential to make longer time and length scales accessible in all-atom simulations of membrane-protein complexes.


FEBS Open Bio | 2017

Cholera toxin B subunit induces local curvature on lipid bilayers

Weria Pezeshkian; Lina J. Nåbo; John Hjort Ipsen

The B subunit of the bacterial cholera toxin (CTxB) is responsible for the toxin binding to the cell membrane and its intracellular trafficking. CTxB binds to the monosialotetrahexosyl ganglioside at the plasma membrane of the target cell and mediates toxin internalization by endocytosis. CTxB induces a local membrane curvature that is essential for its clathrin‐independent uptake. Using all‐atom molecular dynamics, we show that CTxB induces local curvature, with the radius of curvature around 36 nm. The main feature of the CTxB molecular structure that causes membrane bending is the protruding alpha helices in the middle of the protein. Our study points to a generic protein design principle for generating local membrane curvature through specific binding to their lipid anchors.

Collaboration


Dive into the Weria Pezeshkian's collaboration.

Top Co-Authors

Avatar

John Hjort Ipsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Himanshu Khandelia

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Dennis Skjøth Bruhn

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian C. Shillcock

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Adam Cohen Simonsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haifei Gao

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Senthil Arumugam

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge