Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Werner Risau is active.

Publication


Featured researches published by Werner Risau.


Cell | 1993

High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis

Birgit Millauer; Susanne Wizigmann-Voos; Harald Schnürch; Ricardo Martinez; Niels Peter H. Møller; Werner Risau; Axel Ullrich

Examination of flk-1 receptor tyrosine kinase mRNA expression by in situ hybridization analysis revealed specific association with endothelial cells at all stages of mouse development, including the blood islands in the yolk sac of day 8.5-10.5 embryos, in which the early progenitors of this lineage originate. flk-1 transcripts were abundant in proliferating endothelial cells of vascular sprouts and branching vessels of embryonic and early postnatal brain, but were drastically reduced in adult brain, where proliferation has ceased. Identification of the angiogenic mitogen, vascular endothelial growth factor (VEGF), as the high affinity ligand of Flk-1 and correlation of the temporal and spatial expression pattern of Flk-1 and VEGF suggest a major role of this ligand-receptor signaling system in vasculogenesis and angiogenesis.


Journal of Biological Chemistry | 1996

The Vascular Endothelial Growth Factor Receptor Flt-1 Mediates Biological Activities IMPLICATIONS FOR A FUNCTIONAL ROLE OF PLACENTA GROWTH FACTOR IN MONOCYTE ACTIVATION AND CHEMOTAXIS

Matthias Clauss; Herbert A. Weich; Georg Breier; Ulrike E. Knies; Wolfgang Röckl; Johannes Waltenberger; Werner Risau

Two distinct receptors for vascular endothelial growth factor (VEGF), the tyrosine kinase receptors Flt-1 and Flk-1/KDR, have been described. In this study we show that monocytes, in contrast to endothelium, express only the VEGF receptor Flt-1, and that this receptor specifically binds also the VEGF homolog placenta growth factor (PlGF). Both VEGF and PlGF stimulate tissue factor production and chemotaxis in monocytes at equivalent doses. In contrast, endothelial cells expressing both the Flt-1 and the Flk-1/KDR receptors produce more tissue factor upon stimulation with VEGF than after stimulation with PlGF. Neutralizing antibodies to the KDR receptor reduce the VEGF-stimulated tissue factor induction in endothelial cells to levels obtained by stimulation with PlGF alone, but do not affect PlGF-induced tissue factor induction in endothelial cells nor the VEGF-dependent tissue factor production in monocytes. These findings strongly suggest Flt-1 as a functional receptor for VEGF and PlGF in monocytes and endothelial cells and identify this receptor as a mediator of monocyte recruitment and procoagulant activity.


The FASEB Journal | 1995

Differentiation of endothelium.

Werner Risau

Vascular endothelial cells cover the entire inner surface of blood vessels in the body. They play an important role in tissue homeostasis, fibrinolysis and coagulation, blood‐tissue exchange, vasotomie regulation, the vascularization of normal and neoplastic tissues, and blood cell activation and migration during physiological and pathological processes. It is therefore important to define the basic determinants of the endothelial phenotype and its modulation in response to different signals. Signal recognition, transduction, and processing are likely to be complex events dependent on the status of the target endothelial cell in a given organ or tissue. This status is a consequence of inductive and permissive interactions of a pluripotent cell with soluble and insoluble signaling molecules of the environment during embryonic and postnatal development. This re‐view will focus on the biological mechanisms involved in the differentiation of endothelial cells from the mesoderm and their subsequent functional heteroge‐neity in different organs and tissues under physiological as well as pathological conditions.—Risau, W. Differentiation of endothelium. FASEB J. 9, 926‐933(1995)


American Journal of Pathology | 2000

Hypoxia-Induced Vascular Endothelial Growth Factor Expression Precedes Neovascularization after Cerebral Ischemia

Hugo H. Marti; Myriam Bernaudin; Anita Bellail; Heike Schoch; Monika Euler; Edwige Petit; Werner Risau

We investigated the hypothesis that hypoxia induces angiogenesis and thereby may counteract the detrimental neurological effects associated with stroke. Forty-eight to seventy-two hours after permanent middle cerebral artery occlusion we found a strong increase in the number of newly formed vessels at the border of the infarction. Using the hypoxia marker nitroimidazole EF5, we detected hypoxic cells in the ischemic border of the neocortex. Expression of vascular endothelial growth factor (VEGF), which is the main regulator of angiogenesis and is inducible by hypoxia, was strongly up-regulated in the ischemic border, at times between 6 and 24 hours after occlusion. In addition, both VEGF receptors (VEGFRs) were up-regulated at the border after 48 hours and later in the ischemic core. Finally, the two transcription factors, hypoxia-inducible factor-1 (HIF-1) and HIF-2, known to be involved in the regulation of VEGF and VEGFR gene expression, were increased in the ischemic border after 72 hours, suggesting a regulatory function for these factors. These results strongly suggest that the VEGF/VEGFR system, induced by hypoxia, leads to the growth of new vessels after cerebral ischemia. Exogenous support of this natural protective mechanism might lead to enhanced survival after stroke.


Trends in Neurosciences | 1990

Development of the blood-brain barrier

Werner Risau; Hartwig Wolburg

The microenvironment of the CNS is important for neuronal function, and the blood-brain barrier is involved in its maintenance. The barrier is present in a complex cellular system at the level of the tight junctions between endothelial cells. The unique properties of the endothelial cells in the CNS compared with those present in other organs are not predetermined by brain-specific endothelial precursors but are induced by the neural environment during the development of the vascular system. Astrocytes that tightly appose endfeet onto the abluminal side of brain capillaries seem to be important for the induction and maintenance of the endothelial barrier.


American Journal of Pathology | 1998

Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis.

Astrid Stratmann; Werner Risau; Karl H. Plate

Glioblastomas are highly vascular tumors which overexpress the angiogenesis factor vascular endothelial growth factor (VEGF). VEGF and its receptors, VEGF-R1 and VEGF-R2, have been shown to be necessary for embryonic angiogenesis as well as for tumor angiogenesis. Recently, the angiopoietin/Tie2 receptor system has been shown to exert functions in the cardiovascular system that are distinct from VEGF but are also critical for normal vascular development. To assess the potential role of Tie2 and its ligands angiopoietin-1 and angiopoietin-2 in tumor vascularization, we analyzed their expression pattern in human gliomas. Tie-2 was up-regulated in tumor endothelium compared to normal human brain tissue. We further observed cell type-specific up-regulation of the message for both angiopoietin-1 and angiopoietin-2 in gliomas. Whereas Ang-1 mRNA was expressed in tumor cells, Ang-2 mRNA was detected in endothelial cells of a subset of glioblastoma blood vessels. Small capillaries with few periendothelial support cells showed strong expression of Angiopoietin-2, whereas larger glioblastoma vessels with many periendothelial support cells showed little or no expression. Although the function of Tie2 and its ligands in tumor angiogenesis remains a subject of speculation, our findings are in agreement with a recently proposed hypothesis that in the presence of VEGF, local production of Ang-2 might promote angiogenesis.


Cell | 1990

Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene.

Roberto Montesano; Michael S. Pepper; Uta Möhle-Steinlein; Werner Risau; Erwin F. Wagner; L. Orci

Expression of the polyoma virus middle T (mT) oncogene in vivo is associated with a profound subversion of normal vascular development, which results in the formation of endothelial tumors (hemangiomas). In an attempt to understand the molecular mechanisms responsible for this phenomenon, we have investigated, in an in vitro system, the morphogenetic properties of endothelial cells expressing this oncogene. mT-expressing endothelioma (End) cells grown within fibrin gels formed large hemangioma-like cystic structures. All End cell lines examined expressed high levels of fibrinolytic activity resulting from increased production of urokinase-type plasminogen activator and decreased production of plasminogen activator inhibitors. Neutralization of excess proteolytic activity by exogenously added serine protease inhibitors corrected the aberrant in vitro behavior of End cells and allowed the formation of capillary-like tubules. These results suggest that tightly controlled proteolytic activity is essential for vascular morphogenesis and that physiological protease inhibitors play an important regulatory role in angiogenesis.


Developmental Biology | 1988

Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis

Werner Risau; Vance Lemmon

We have previously characterized monoclonal antibodies against chick brain cells. One of them (14-2B2) brightly stained all capillaries in frozen sections of chick brain. Here we show that this antibody is directed against chick fibronectin. Using this antibody and polyclonal antibodies against laminin, we have studied the development of the vascular extracellular matrix. Vasculogenesis, the development of capillaries from in situ differentiating endothelial cells, was studied in yolk sac blood islands and intraembryonic dorsal aorta. Blood islands produced high levels of fibronectin but not laminin. Early intraembryonic capillaries all expressed fibronectin but little if any laminin. The dorsal aorta of a 6-day-old chick embryo has several layers of fibronectin-producing cells, but is devoid of laminin. Laminin expression commenced at Day 8 and by Day 10 an adult-like distribution was found in the aortic vascular wall. Angiogenesis, the formation of capillaries from preexisting vessels, was studied during brain development. Capillary sprouts invading the neuroectoderm at Embryonic Day 4 migrated in a fibronectin-rich matrix devoid of laminin. Ultrastructural immunolocalization demonstrated the presence of fibronectin exclusively on the abluminal site of the endothelial cells. Beginning on Day 6, laminin codistributed with fibronectin in brain capillaries. We conclude that immature capillaries migrate and proliferate in a fibronectin-rich extracellular matrix, which is subsequently remodeled acquiring basement membrane-like characteristics. We suggest that laminin expression is an early indication of vascular maturation.


Mechanisms of Development | 1997

HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1α and developmentally expressed in blood vessels

Ingo Flamme; Thomas Fröhlich; Marie von Reutern; Andreas Kappel; Annette Damert; Werner Risau

Transcription factors of the bHLH-PAS protein family are important regulators of developmental processes such as neurogenesis and tracheal development in invertebrates. Recently a bHLH-PAS protein, named trachealess (trl) was identified as a master regulator of tracheogenesis. Hypoxia-inducible factor, HIF-1 alpha, is a vertebrate relative of trl which is likely to be involved in growth of blood vessels by the induction of vascular endothelial growth factor (VEGF) in response to hypoxia. In the present study we describe mRNA cloning and mRNA expression pattern of mouse HIF-related factor (HRF), a novel close relative of HIF-1 alpha which is expressed most prominently in brain capillary endothelial cells and other blood vessels as well as in bronchial epithelium in the embryo and the adult. In addition, smooth muscle cells of the uterus, neurons, brown adipose tissue and various epithelial tissues express HRF mRNA as well. High expression levels of HRF mRNA in embryonic choroid plexus and kidney glomeruli, places where VEGF is highly expressed, suggest a role of this factor in VEGF gene activation similar to that of HIF-1 alpha. Given the similarity between morphogenesis of the tracheal system and the vertebrate vascular system, the expression pattern of HRF in the vasculature and the bronchial tree raises the possibility that this family of transcription factors may be involved in tubulogenesis.


Acta Neuropathologica | 2003

Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme.

Hartwig Wolburg; Karen Wolburg-Buchholz; Jörg Kraus; Gesa Rascher-Eggstein; Stefan Liebner; Stefan Hamm; Frank Duffner; Ernst-H. Grote; Werner Risau; Britta Engelhardt

In the central nervous system (CNS) complex endothelial tight junctions (TJs) form a restrictive paracellular diffusion barrier, the blood-brain barrier (BBB). During inflammation, BBB properties are frequently lost, resulting in brain edema. To investigate whether BBB leakiness correlates with molecular changes at BBB TJs, we performed immunofluorescence stainings for TJ molecules in a mouse model of experimental autoimmune encephalomyelitis (EAE) and in human tissue with glioblastoma multiforme (GBM). In TJs of healthy CNS vessels in both mouse and man we detected occludin, ZO-1, claudin-5 and claudin-3. In EAE brain and spinal cord sections we observed the selective loss of claudin-3 immunostaining from TJs of venules surrounded by inflammatory cuffs, whereas the localization of the other TJ proteins remained unchanged. In addition, selective loss of claudin-3 immunostaining was also observed in altered cerebral microvessels of human GBM. Our data demonstrate the selective loss of claudin-3 from BBB TJs under pathological conditions such as EAE or GBM when the integrity of the BBB is compromised, and therefore suggest that claudin-3 is a central component determining the integrity of BBB TJs in vivo.

Collaboration


Dive into the Werner Risau's collaboration.

Top Co-Authors

Avatar

Georg Breier

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl H. Plate

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Kniesel

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge